
CSCD01 Week 1 Notes
1

Why Do Projects Fail:
- Some of the most common reasons projects fail are:

- Unrealistic or unarticulated project goals.
- Inaccurate estimates of needed resources.
- Badly defined system requirements.
- Poor reporting of the project’s status.
- Unmanaged risks.
- Poor communication among customers, developers, and users.
- Use of immature technology.
- Inability to handle the project’s complexity.
- Sloppy development practices.
- Poor project management.

- Software project failures have a lot in common with airplane crashes. Just as pilots never
intend to crash, software developers don’t aim to fail. When a commercial plane crashes,
investigators look at many factors, such as the weather, maintenance records, the pilot’s
disposition and training, and cultural factors within the airline. Similarly, we need to look
at the business environment, technical management, project management, and
organizational culture to get to the roots of software failures.

- Chief among the business factors are competition and the need to cut costs.
Increasingly, senior managers expect IT departments to do more with less and do it
faster than before. They view software projects not as investments but as pure costs that
must be controlled.

- A lack of upper-management support can also hinder an IT undertaking. This runs the
gamut from failing to allocate enough money and manpower to not clearly establishing
the IT project’s relationship to the organization’s business.

- Frequently, IT project managers eager to get funded resort to a form of liar’s poker,
overpromising what their project will do, how much it will cost, and when it will be
completed. Many, if not most, software projects start off with budgets that are too small.
When that happens, the developers have to make up for the shortfall somehow, typically
by trying to increase productivity, reducing the scope of the effort, or taking risky
shortcuts in the review and testing phases. These all increase the likelihood of error and,
ultimately, failure.

- Sloppy development practices are a rich source of failure, and they can cause errors at
any stage of an IT project.

- Project managers also play a crucial role in software projects and can be a major source
of errors that lead to failure. The most important function of the IT project manager is to
allocate resources to various activities. Beyond that, the project manager is responsible
for project planning and estimation, control, organization, contract management, quality
management, risk management, communications, and human resource management.
Bad decisions by project managers are probably the single greatest cause of software
failures today. Poor technical management, by contrast, can lead to technical errors, but
those can generally be isolated and fixed. However, a bad project management decision,
such as hiring too few programmers or picking the wrong type of contract, can wreak
havoc.

CSCD01 Week 1 Notes
2

Software Process:
- It is:

- A structured set of activities, used by a team to develop software systems.
- The standards, practices, and conventions of a team.
- A description of how a team performs its work.

- Some synonyms of software process are:
- Software Development Process
- Software Development Methodology
- Software Development Life Cycle

- In a nutshell, it is a structured description of how a software development team goes
through.

- Software process is a set of related activities that leads to the production of the
software. These activities may involve the development of the software from the scratch,
or modifying an existing system.

- Over time, people develop new software process models.
- A software process model represents the order in which the activities of software

development will be undertaken. It describes the sequence in which the phases of the
software lifecycle will be performed.

Software Process Model vs. Software Process:
- Software process is a coherent set of activities for specifying, designing, implementing

and testing software systems.
- A software process model is an abstract representation of a process that presents a

description of a process from some particular perspective. When we describe and
discuss about process models, we usually talk about the activities in these processes
such as specifying a data model, designing a user interface, etc and the ordering of
these activities.

- Software process descriptions may include:
- Products: The outcomes of a process activity.
- Roles: Reflect the responsibilities of the people involved in the process.
- Pre and post-conditions: Are statements that are true before and after a

process activity has been enacted or a product produced.
- There are many different software processes but all involve:

- Specification: Defining what the system should do.
- Design and Implementation: Defining the organization of the system and

implementing the system.
- Validation: Checking that it does what the customer wants.
- Evolution: Changing the system in response to changing customer needs.

Plan-Driven and Agile Processes:
- Plan-driven processes are processes where all of the process activities are planned in

advance and progress is measured against this plan.
- In agile processes, planning is incremental which makes it easier to change the

process to reflect changing customer requirements.
- In practice, most practical processes include elements of both plan-driven and agile

approaches.
- There are no right or wrong software processes.

CSCD01 Week 1 Notes
3

Waterfall Method:
- The waterfall model is a sequential (non-iterative) design process, used in software

development processes, in which progress is seen as flowing steadily downwards (like a
waterfall) through the phases of:

1. Requirements analysis
2. Design
3. Implementation
4. Testing (verification)
5. Maintenance

- The result of each phase is one or more documents that should be approved and the
next phase shouldn’t be started until the previous phase has completely been finished.
I.e. Each phase is carried out completely, for all requirements, before proceeding to the
next. Furthermore, this process is strictly sequential. No backing up or repeating phases.

- The waterfall model should only be applied when requirements are well understood and
unlikely to change radically during development as this model has a relatively rigid
structure which makes it relatively hard to accommodate change when the process is
underway.

- Pros:
- Time spent early in the software production cycle can reduce costs at later

stages.
- Suitable for highly structured organizations.
- It places emphasis on documentation which will contribute to corporate memory.
- It provides a structured approach. The model itself progresses linearly through

discrete, easily understandable and explainable phases and thus is easy to
understand.

- It also provides easily identifiable milestones in the development process.
- It is well suited to projects where requirements and scope are fixed, the product

itself is firm and stable, and the technology is clearly understood.
- Simple, easy to understand and follow.
- Highly structured.
- After specification is complete, low customer involvement is required.

- Cons:
- Inflexible partitioning of the project into distinct stages makes it difficult to

respond to changing customer requirements. Therefore, this model is only
appropriate when the requirements are well-understood and changes will be fairly
limited during the design process. However, few business systems have stable
requirements.

- The waterfall model is mostly used for large systems engineering projects where
a system is developed at several sites. In these circumstances, the plan-driven
nature of the waterfall model helps coordinate the work.

CSCD01 Week 1 Notes
4

Alternative Methodologies:
- As companies began to realize that the waterfall method was failing them (large projects

were failing completely or going way over budget) alternatives were sought.
- A gradual trend was in methods that used an incremental development of product using

iterations (almost like smaller waterfalls).
- Iterations could be only a few weeks, but still included the full cycle of analysis, design,

coding, etc.
- These various lightweight development methods were later referred to as agile

methodologies.
- As our models evolve, they encourage software development teams to:

- Be more flexible and adaptive to changing requirements.
- Collect feedback from users more frequently.
- Release code more frequently.

- And then came the term Agile.
- Agile is neither a process nor a model but is a term that describes a process, model, or

a team. Essentially, it means “Flexible and adaptive process/team, suitable for projects
with constantly changing requirements".

Agile Manifesto:
- We value:

- Individuals and interactions over processes and tools.
- Working software over comprehensive documentation.
- Customer collaboration over contract negotiation.
- Responding to change over following a plan.

- There is value to the items on the right, but the left is valued more.
Agile:

- Agility is flexibility. It is a state of dynamic, adapted to the specific circumstances.
- Agile refers to a number of different frameworks that share these values.

I.e. Agile is an umbrella term for a set of methods and practices based on the values and
principles expressed in the Agile Manifesto that is a way of thinking that enables teams
and businesses to innovate, quickly respond to changing demand, while mitigating risk.

- Examples of agile frameworks are:
- Test Driven Development (TDD)
- Extreme Programming (XP)
- Scrum
- Lean Software

Test Driven Development (TDD):
- A concept that started in the late 90s.
- Used by many Agile teams.
- The idea is to write the tests, before you write the code.
- The tests are the requirements that drive the development.
- A software development approach in which test cases are developed to specify and

validate what the code will do. In simple terms, test cases for each functionality are
created and tested first and if the test fails then the new code is written in order to pass
the test and make code simple and bug-free.

- TDD ensures that your system actually meets requirements defined for it. It helps to
build your confidence about your system.

- Traditionally, TDD means:
- Write a failing test.
- Write the (least amount of) code to pass the test.
- Repeat.
- Every now and then refactor/cleanup code.

CSCD01 Week 1 Notes
5

- However, in practice, each team decides when and where it makes sense for tests to
drive development.

- Most teams borrow some of the concepts of TDD, such as the fact that tests are used as
specification/documentation and the fact that we should automate tests in fragile/crucial
areas of your system.

- Software development teams can adopt TDD with different types of testings such as:
- Unit Test
- Integration: Test that all the different units in the system play nicely together.
- Acceptance: Specify customer’s requirement.
- Regression: Verify we didn’t break anything that was working before. Automated

unit tests can be used as regression tests.
- Advantages of TDD:

- Early bug notification:
- Using TDD, over time, a suite of automated tests is built up that you and

any other developer can rerun at will.
- Better designed, cleaner and more extensible code:

- TDD helps developers understand how the code will be used and how it
interacts with other modules.

- TDD allows you to write smaller modules with each having a single
responsibility rather than monolithic modules with multiple responsibilities.
This makes the code simpler to understand.

- TDD forces you to write the bare minimum of production code needed to
pass the tests.

- Confidence to refactor:
- If you refactor code, it might break. By having a set of automated tests,

you can fix those bugs before release.
- Good for teamwork:

- In the absence of any team member, other team members can easily pick
up and work on the code. It also aids knowledge sharing, thereby making
the team more effective overall.

- Good for developers:
- Though developers have to spend more time writing TDD test cases, it

will take a lot less time debugging and developing new features. You will
write cleaner, less complicated code.

Extreme Programming (XP):
- XP is a model that was getting a lot of hype in the late 90s.
- XP is an Agile model, consisting of many rules/practices, one of which is TDD.
- XP is a very detailed model, but in practice, most teams adopt a subset of its rules.
- Some highlights of XP:

- Iterative incremental model.
- Better teamwork.
- Customer’s decisions drive the project.
- Dev team works directly with a domain expert.
- Accept changing requirements, even near the deadline.
- Focus on delivering working software instead of documentation.

- A key assumption of XP is that the cost of changing a program can be held mostly
constant over time. This can be achieved with:

- Emphasis on continuous feedback from the customer
- Short iterations
- Design and redesign
- Coding and testing frequently

CSCD01 Week 1 Notes
6

- Eliminating defects early, thus reducing costs
- Keeping the customer involved throughout the development
- Delivering working product to the customer

- Extreme Programming involves:
- Writing unit tests before programming and keeping all of the tests running at all

times. The unit tests are automated and will eliminate defects early, thus reducing
the costs.

- Starting with a simple design just enough to code the features at hand and
redesigning when required.

- Pair programming which is when two programmers sit at one screen, taking
turns to use the keyboard. While one of them is at the keyboard, the other
constantly reviews and provides inputs.

- Integrating and testing the whole system several times a day.
- Putting a minimal working system into the production quickly and upgrading it

whenever required.
- Keeping the customer involved all the time and obtaining constant feedback.

Scrum:

- Scrum is a flexible, holistic product development strategy where a development team
works as a unit to reach a common goal. Scrum is mainly about the management of
software development projects.

- Sprint: The actual time period when the scrum team works together to finish an
increment. Two weeks is a pretty typical length for a sprint, though some teams find a
week to be easier to scope or a month to be easier to deliver a valuable increment.
During this period, the scope can be re-negotiated between the product owner and the
development team if necessary. This forms the crux of the empirical nature of scrum.
Key features of sprints:

- It is a basic unit of development in a scrum.
- It is of fixed length, typically from one week to a month.
- Each sprint begins with a sprint planning meeting to determine the tasks for the

sprint and estimates are made.
- During each sprint a potentially deliverable product is produced.
- Features are pulled from a product backlog, a prioritized set of high level work

requirements.
- Sprint planning: The work to be performed during the current sprint is planned during

this meeting by the entire development team. This meeting is led by the scrum master
and is where the team decides on the sprint goal. Specific user stories are then added
to the sprint from the product backlog. These stories always align with the goal and are
also agreed upon by the scrum team to be feasible to implement during the sprint. At the

CSCD01 Week 1 Notes
7

end of the planning meeting, every scrum member needs to be clear on what can be
delivered in the sprint and how the increment can be delivered.

- User Story: An informal, general explanation of a software feature written from the
perspective of the end user or customer. The purpose of a user story is to articulate how
a piece of work will deliver a particular value back to the customer. User stories are a few
sentences in simple language that outline the desired outcome. They don't go into detail.
Requirements are added later, once agreed upon by the team.

- Product Backlog: The master list of work that needs to get done maintained by the
product owner or product manager. This is a dynamic list of features, requirements,
enhancements, and fixes that acts as the input for the sprint backlog. It is, essentially,
the team’s “To Do” list. The product backlog is constantly revisited, re-prioritized and
maintained by the Product Owner because, as we learn more or as the market changes,
items may no longer be relevant or problems may get solved in other ways.

- Sprint Backlog: The list of items, user stories, or bug fixes, selected by the
development team for implementation in the current sprint cycle. Before each sprint, in
the sprint planning meeting the team chooses which items it will work on for the sprint
from the product backlog. A sprint backlog may be flexible and can evolve during a
sprint.

- Increment/Sprint Goal: The usable end-product from a sprint.
- Daily Scrum/Daily Standup: A short meeting that happens at the same place and time

each day. At each meeting, the team reviews work that was completed the previous day
and plans what work will be done in the next 24 hours. This is the time for team
members to speak up about any problems that might prevent project completion.
Some features of the daily scrum:

- No more than 15 minutes.
- Meetings must start on-time, and happen at the same location.
- Each member answers the following:

- What have you done since yesterday?
- What are you planning on doing today?
- Are there any impediments or stumbling blocks?

- A scrum master will handle resolving any impediments outside of this meeting
- Scrum Master: The person on the team who is responsible for managing the process,

and only the process. They are not involved in the decision-making, but act as a lodestar
to guide the team through the scrum process with their experience and expertise. The
scrum master is the team role responsible for ensuring the team follows the processes
and practices that the team agreed they would use.

- In traditional agile development software is brought to release level every few months.
Releases, which are sets of sprints, are used to produce shippable versions of software
products.

- A key feature of scrum is that during a project a customer may change their minds about
what they want/need. We need to accept that the problem cannot be fully understood or
defined and instead allow teams to deliver quickly and respond to changes in a timely
manner.

Why Use Agile:
- Demand for higher quality with lower cost.
- Post-mortems of software projects lead to a lot of knowledge gain about what went

right/wrong during the development phase.
- With the waterfall model, we do not have a clear way to predict the future, so

these lessons are always in hindsight.
- Smaller, iterative schedules mean problems can be identified/addressed much

earlier in the cycle.

CSCD01 Week 1 Notes
8

- Agile eliminates waste.
- Making changes at the end of a production cycle is costly. With agile we are more

likely to detect these changes early enough to reduce the costs.
- Iterative design means we build a product in small steps.

- Incrementally add features.
- Software is in working condition at least every few weeks.
- Allows people to test earlier in the development cycle.
- Software improvements happen much earlier and can be fine-tuned rather

then trying to modify the design at the end of a waterfall cycle.
Agile Team Management:

- From the bottom up.
- Teams are empowered to manage the smallest level of details, while leaving the higher

levels to upper management.
- Teams, upon seeing the small amount of ownership they get from solving smaller

problems, take on responsibility for larger problems.
- Head off issues before they become major problems.
- Individuals solve problems with their colleagues.

Agile Project Structure:
- An agile project consists of a series of iterations of development.
- Each interval usually lasts only two to four weeks.
- Developers implement features, called user stories, during each iteration that add value

to the project.
- Each iteration contains a full development cycle:

- Concept
- Design
- Coding
- Testing
- Deployment

- The project is reviewed at the end of each iteration.
- Results are used to direct future iterations.
- Every three to six iterations the project is built up to a release state, meaning that most

major goals are accomplished.
Incremental Development Benefits:

- The cost of accommodating changing customer requirements is reduced as the amount
of analysis and documentation that has to be redone is much less than what is required
with the waterfall model.

- It is easier to get customer feedback on the development work that has been done.
Customers can comment on demonstrations of the software and see how much has
been implemented.

- More rapid delivery and deployment of useful software to the customer is possible.
Customers are able to use and gain value from the software earlier than is possible with
a waterfall process.

Incremental Development Problems:
- The process is not visible. Managers need regular deliverables to measure progress. If

systems are developed quickly, it is not cost-effective to produce documents that reflect
every version of the system.

- The system structure tends to degrade as new increments are added. Unless time and
money is spent on refactoring to improve the software, regular change tends to corrupt
its structure. Incorporating further software changes becomes increasingly difficult and
costly.

CSCD01 Week 1 Notes
9

Is It True That Only Non-Agile Projects Fail:
- The Scott Ambler survey defines success as a solution being delivered and meeting its

success criteria within the acceptable range defined by the organization, and failure as
the project never delivering a solution.

- The Ambler report concluded that agile projects do not fail more than other projects.
They succeed at the same level as other iterative methodologies.

- However, agile projects face a set of challenges and problems related to applying a
different approach to project management. The top three reasons for agile project failure
are:

1. Inadequate experience with agile methods.
2. Little understanding of the required broader organizational change.
3. Company philosophy or culture at odds with agile values.

Selecting a Development Model:
- For organizations and projects, where experience can be used to plan a course of action

with a good degree of certainty for a positive outcome, a traditional methodology may be
more appropriate than an agile methodology. In this case, the plans can be developed
up-front and then designed, developed, and tested without much variance.

- Agile methodologies are effective when the product details cannot be defined or agreed
in advance with any degree of accuracy. This situation calls for the collaborative
environment between the user and the developer. Agile methodologies are suited for a
dynamic and changing environment.

Key Process Stages:
- The stages are:

1. Requirements specification
2. Software discovery and evaluation
3. Requirements refinement
4. Application system configuration
5. Component adaptation and integration

- Real software processes are interleaved sequences of technical, collaborative and
managerial activities with the overall goal of specifying, designing, implementing and
testing a software system.

- The four basic process activities of specification, development, validation and evolution
are organized differently in different development processes. For example, in the
waterfall model, they are organized in sequence, whereas in the incremental
development they are interleaved.

Software Specification:
- Is the process of establishing what services are required and the constraints on the

system’s operation and development.
- Requirements engineering process involves the following:

- Requirements elicitation and analysis: Is the practice of researching and
discovering the requirements of a system from users, customers, and other
stakeholders. It is the various ways used to gain knowledge about the project
domain and requirements. The various sources of domain knowledge include
customers, business manuals, the existing software of the same type, standards
and other stakeholders of the project. It answers the question “What do the
system stakeholders require or expect from the system?”

- Requirements specification: Defines the requirements in detail. This activity is
used to produce formal software requirement models. During specification, more
knowledge about the problem may be required which can again trigger the
elicitation process.
I.e. It is the process of writing down the user and system requirements into a

CSCD01 Week 1 Notes
10

document. The requirements should be clear, easy to understand, complete and
consistent.
The user requirements for a system should describe the functional and
non-functional requirements so that they are understandable by users who don’t
have technical knowledge. You should write user requirements in natural
language supplied by simple tables, forms, and intuitive diagrams.
The requirement document shouldn’t include details of the system design and
you shouldn’t use any software jargon or formal notations.
The system requirements are expanded versions of the user requirements that
are used by software engineers as the starting point for the system design. They
add detail and explain how the user requirements should be provided by the
system. They shouldn’t be concerned with how the system should be
implemented or designed. The system requirements may also be written in
natural language but other ways based on structured forms, or graphical
notations are usually used.

- Requirements validation: Checks the validity of the requirements. It’s a process
of ensuring that the specified requirements meet the customer needs.

Software Design and Implementation:
- Is the process of converting the system specification into an executable system.
- Software design is designing a software structure that realizes the specification.

Some software design activities include:
- Architectural design: Identifying and defining the overall structure of the

system, the principal components, their relationships and how they are
distributed.

- Database design: Designing the system data structures and how they will be
represented in a database.

- Interface design: Defining the interfaces between system components.
- Component selection and design: Searching for reusable components. If

unavailable, you design how it will operate.
- Software implementation is taking your design and translating into an executable

program.
The software is implemented either by developing program(s) or by configuring an
application system.
Design and implementation are interleaved activities for most types of software system.
Programming is an individual activity with no standard process.

CSCD01 Week 1 Notes
11

Debugging is the activity of finding program faults and correcting these faults.

- The activities of design and implementation are closely related and may be interleaved.
Software Validation:

- Verification and validation (V&V) is intended to show that a system conforms to its
specification and meets the requirements of the system customer.
I.e. It is the process of checking that a software system meets specifications and that it
fulfills its intended purpose.

- Software validation is a dynamic mechanism of testing and validating if the software
product actually meets the exact needs of the customer or not. The process helps to
ensure that the software fulfills the desired use in an appropriate environment. The
validation process involves activities like unit testing, integration testing, system testing
and user acceptance testing.
I.e. Software validation checks if the code actually does what it is supposed to do.

- Software verification is a process of checking documents, design, code, and program
in order to check if the software has been built according to the requirements or not. The
main goal of the verification process is to ensure quality of software application, design,
architecture etc. The verification process involves activities like reviews, walk-throughs
and inspection.
I.e. Software verification checks if the program is built according to the specifications and
design.

- System testing is the process of testing an integrated system to verify that it meets the
specified requirements. The purpose of this test is to evaluate the system’s compliance
with the specified requirements.

- Testing is the most commonly used V&V activity.

CSCD01 Week 2 Notes
1

Building Models:
- Introduction to Models:
- Forward engineering is where we take the requirements and produce a model from it.

This model can either be very high level or very low level.
If we want a high level point of view, we usually sketch the components of the model.
If we want a low level point of view, we need to add a lot of details.

- Reverse engineering is where we’re given a code base and we extract the
requirements from it. Creating higher level views can help us better understand the
project.

- For reverse engineering, we would like to know the following information:
1. Structure of the code:
- This involves knowing the dependencies of the code and all the different

components and how they couple together.
2. Behaviour of the code:
- This involves knowing how the code executes.
- For more complex code, we may need to make state machine models.
3. Function of the code:
- This involves knowing what functions the code provides to the user.

- Modelling can guide your exploration.
- It can help you figure out what questions to ask.
- It can help to reveal key design decisions.
- It can help you to uncover problems.

- Modelling can help us check our understanding.
- We can use the model to understand its consequences and know if it has the

properties we expect.
- We can animate the model to help us visualize/validate software behaviour.

- Modelling can help us communicate.
- Modelling provides useful abstractions that focus on the point you want to make

without overwhelming people with detail.
- Furthermore, both technical and non-technical people can understand.

- However, the exercise of modelling is more important than the model itself.
Time spent perfecting the models might be time wasted.

- Dealing with the Problem Complexity:
- There are 4 ways to dealing with problem complexity:

1. Abstraction:
- Allows us to ignore details and look at the big picture.
- We can treat objects as the same by ignoring certain differences.
- Note: Every abstraction involves choice over what is important.
2. Decomposition:
- Allows us to break a problem into many independent pieces so that we can study

each piece separately.
- Note: The pieces are rarely independent.
3. Projection:
- Allows us to separate different points of view and describe them separately.

I.e. Divide and conquer.
- This is different from decomposition as it does not partition the problem space.
- Note: Different views will be inconsistent most of the time.
4. Modularization:
- Allows us to choose structures that are stable over time to localize change.
- Note: Some structures will make localizing changes easier and others will make

it harder.

CSCD01 Week 2 Notes
2

- Design Phase:
- Design is specifying the structure of how a software system will be written and function,

without actually writing the complete implementation.
- During the design phase we transition from "what" the system must do to "how" the

system will do it.
- The design phase involves answering the following questions:

- What classes will we need to implement a system that meets our requirements?
- What fields and methods will each class have?
- How will the classes interact with each other?

Unified Modeling Language (UML):
- Introduction to UML:
- Unified Modeling Language (UML) allows us to express the design of a program

before writing any code.
- It is language-independent.
- It is an extremely expressive language.
- UML is a graphical language for visualizing, specifying, constructing, and documenting

information about software-intensive systems.
- UML can be used to develop diagrams and provide programmers with ready-to-use,

expressive modeling examples. Some UML tools can generate program language code
from UML. UML can be used for modeling a system independent of a platform language.

- UML is a picture of an object oriented system. Programming languages are not abstract
enough for object oriented design. UML is an open standard and lots of companies use
it.

- Legal UML is both a descriptive language and a prescriptive language. It is a descriptive
language because it has a rigid formal syntax, like programming languages, and it is a
prescriptive language because it is shaped by usage and convention.

- It’s okay to omit things from UML diagrams if they aren’t needed by the
team/supervisor/instructor.

- History of UML:
- In an effort to promote object oriented designs, three leading object oriented

programming researchers joined forces to combine their languages. They were:
1. Grady Booch (BOOCH)
2. Jim Rumbaugh (OML: object modeling technique)
3. Ivar Jacobsen (OOSE: object oriented software eng)

- They came up with an industry standard in the mid 1990’s.
- UML was originally intended as a design notation and had no modelling associated with

it.
- UML diagrams can help engineering teams:
- Bring new team members or developers switching teams up to speed quickly.
- Navigate source code.
- Plan out new features before any programming takes place.
- Communicate with technical and non-technical audiences more easily.
- Uses of UML:
1. It can be used as a sketch to communicate aspects of the system.
- Forward design: Doing UML before coding.
- Backward design: Doing UML after coding as documentation.
2. It can be used as a blueprint to show a complete design that needs to be implemented.

This is sometimes done with CASE (Computer-Aided Software Engineering) tools. One
of these tools is visual paradigm.

3. It can be used as a programming language.
- Some UML tools can generate program language code from UML.

CSCD01 Week 2 Notes
3

- UML Notations:

- Class Diagram: It displays the system's classes, attributes, and methods. It is helpful in
recognizing the relationship between different objects as well as classes.

- Object Diagram: It describes the static structure of a system at a particular point in time.
It can be used to test the accuracy of class diagrams. It represents distinct instances of
classes and the relationship between them at a time.

- Use Case Diagram: It represents the functionality of a system by utilizing actors and
use cases. It encapsulates the functional requirement of a system and its association
with actors. It portrays the use case view of a system.

- Package Diagram: It is used to illustrate how the packages and their elements are
organized. It shows the dependencies between distinct packages. It manages UML
diagrams by making it easily understandable. It is used for organizing the class and use
case diagrams.

- Statechart: It is a behavioral diagram. It portrays the system's behavior by utilizing finite
state transitions. It models the dynamic behavior of a class in response to external
stimuli.

- Sequence Diagram: It shows the interactions between objects in terms of messages
exchanged over time. It delineates in what order and how the object functions are in a
system. Time does not play a role.

- Activity Diagram: It models the flow of control from one activity to the other. With the
help of an activity diagram, we can model sequential and concurrent activities. It visually
depicts the workflow as well as what causes an event to occur. Time plays a role.

- Note: Statechart depicts the state transition. E.g. Finite state machine. Activity diagrams
depict the various activities that occur. In activity diagrams, the time plays a role while in
sequence diagrams, time does not play a role. An activity diagram is a sequence
diagram but with timing.

CSCD01 Week 2 Notes
4

- UML Class Diagram:
- A class describes a group of objects with:

- Similar attributes
- Common operations
- Common relationships with other objects
- Common meaning

- A class diagram describes the structure of an object oriented system by showing the
classes in that system and the relationships between the classes. A class diagram also
shows the constraints, and attributes of classes.
I.e.
A UML class diagram is a picture of:

- The classes in an object oriented system.
- Their fields and methods.
- Connections between the classes that interact or inherit from each other.

- Some things that are not represented in a UML class diagram are:
- Details of how the classes interact with each other.
- Algorithmic details, like how a particular behavior is implemented.

- Note: Coupling between classes must be kept low, while cohesion within a class must
be kept high. Furthermore, we should respect the SOLID principles.

- UML class diagrams cans show:
1. Division of responsibility
2. Subclassing/Inheritance
3. Visibility of objects and methods
4. Aggregation/Composition
5. Interfaces
6. Dependencies

- Naming Convention:
1. Class name
- Use <<interface>> on top of interface names.
- To show that a class is abstract, either italicize the class name or put

<<abstract>> on top of the abstract class name.
2. Data members/Attributes
- The data members section of a class lists each of the class's data members on a

separate line.
- Each line uses this format: attributeName : type

E.g. name : String
- We must underline static attributes.
3. Methods/Operations
- The methods of a class are displayed in a list format, with each method on its

own line.
- Each line uses this format:

methodName(param1: type1, param2: type2, ...) : returnType
E.g. distance(p1: Point, p2: Point) : Double

- We may omit setters and getters. However, don’t omit any methods from an
interface.

- Furthermore, do not include inherited methods.
- We must underline static methods.

CSCD01 Week 2 Notes
5

- Visibility:
- − means that it is private.
- + means that it is public.
- # means that it is protected.
- ∼ means that it is a package.
- / means that it is a derived attribute. A derived attribute is an attribute whose value is

produced or computed from other information.
- Note: Everything except / is common for both methods and attributes.
- E.g.

- Inheritance/Generalization and Realization Relationships:
- Generalization/inheritance is when a class extends another class while realization is

when a class implements an interface.
- Generalization represents a “IS-A” relationship.
- Hierarchies are drawn top down with arrows pointing upward to the parent class.

I.e. The parent class is above the child class and the arrow goes from the child class to
the parent class.

- For a class, draw a solid line with a black arrow pointing to the parent class.
- For an abstract class, draw a solid line with a white arrow pointing to the parent abstract

class.
- For an interface, draw a dashed line with a white arrow pointing to the interface.
- E.g.

CSCD01 Week 2 Notes
6

- Association:
- An association represents a relationship between two classes. It also defines the

multiplicity between objects.
- Association can be represented by a line between the classes with an arrow indicating

the navigation direction.
Note: Sometimes, association can be represented just by a line between the classes.
This means that information can flow in both directions.

- We need the following items to represent association between 2 classes:
1. The multiplicity
2. The name of the relationship
3. The direction of the relationship

- Aggregation, composition and dependency are all types of association.
- Multiplicity:
- * means 0 or more.
- 1 means 1 exactly.
- 2..4 means 2 to 4, inclusive.
- 3..* means 3 or more.
- There are other relationships such as 1-to-1, 1-to-many, many-to-1 and many-to-many.
- Aggregation:
- A special type of association.
- Aggregation implies a relationship where the child class can exist independently of the

parent class. This means that if you remove/delete the parent class, the child class still
exists.
I.e. Aggregation represents a “HAS-A” or “PART-OF” relationship.
E.g. Say we have 2 classes, Teacher (the parent class) and Student (the child class). If
we delete the Teacher class, the Student class still exists.

- Aggregation is symbolized by an arrow with a clear white diamond arrowhead pointing to
the parent class.

- E.g.

- Aggregation is considered as a weak type of association.
- Composition:
- A special type of association.
- It is a stronger version of aggregation where if you delete the parent class, then all the

child classes are also deleted.
I.e. Composition represents a “ENTIRELY MADE OF” relationship.
E.g. Say we have 2 classes, House (the parent class) and Room (the child class). If we
delete the House class, the Room class is also deleted.

- Composition is symbolized by an arrow with a black diamond arrowhead pointing to the
parent class.

CSCD01 Week 2 Notes
7

- E.g.

- Composition is considered as a strong type of association.
- Dependency:
- Is a special type of association.
- Dependency indicates a “uses” relationship between two classes. If a change in

structure or behaviour of one class affects another class, then there is a dependency
between those two classes.

- Dependency is represented by a dotted arrow where the arrowhead points to the
independent element.

- E.g.

- Examples of UML class diagrams:

CSCD01 Week 2 Notes
8

- How to draw class diagrams:
1. Identify the objects in the problem and create classes for each of them
2. Add attributes
3. Add operations
4. Connect classes with relationships
5. Specify the multiplicities for association connections.

- UML Object Diagram:
- Object diagrams look very similar to class diagrams.
- Naming Convention:

Object name: Type
Attribute: Value (Sometimes, it’s Attribute = Value)
E.g.

- Note: 2 different objects may have identical attribute values.
- Purpose:
- It is used to describe the static aspect of a system.
- It is used to represent an instance of a class.
- It can be used to perform forward and reverse engineering on systems.
- It is used to understand the behavior of an object.
- It can be used to explore the relations of an object and can be used to analyze other

connecting objects.

CSCD01 Week 3 Notes
1

Coupling vs Cohesion:
- Coupling and Cohesion:
- Modules are the building blocks of architectural applications and they often

communicate with each other.
- A good architecture minimizes coupling between modules and maximizes the cohesion

between modules.
- Cohesion refers to the degree to which the elements inside a module belong together.
- High-cohesion means that each class takes care of one thing, and one thing only. This

references the Single Responsibility Principle.
- Low cohesion implies that a given module performs tasks which are not very related to

each other and hence can create problems as the module becomes large.
- Modules with high cohesion tend to be preferable, because high cohesion is associated

with several desirable traits of software including robustness, reliability, reusability, and
understandability. In contrast, low cohesion is associated with undesirable traits such as
being difficult to maintain, test, reuse, or even understand.

- Think of building a physical robot. Many small parts (highly cohesive), versus a few
mega parts (low cohesion, monolithic).

- Coupling refers to the interdependencies between modules.
I.e. Components that are mutually dependent are also called coupled.

- A loosely coupled system is one in which each of its components has, or makes use of,
little or no knowledge of the definitions of other separate components.

- Tight coupling/tightly coupled is a type of coupling that describes a system in which
hardware and software are not only linked together, but are also dependent upon each
other.

- Loose coupling is important because it enables isolation and makes for future changes
easier.

- We want to keep the coupling low and the cohesion high.
- Measuring Coupling:
- Efferent coupling (ec): Measures the number of classes on which a given class

depends.
- Afferent coupling (ac): Measures how many classes depend on a given class.
- The instability index measures efferent coupling in relation to total coupling:

𝑒𝑐
𝑒𝑐 + 𝑎𝑐

- The closer to zero the instability index is, the better.
- Measuring Cohesion:
- The cohesion of a class is the inverse of the number of method pairs whose similarity is

zero.
- E.g. Assume a class has methods M1(p,q,r,s,t), M2(r,s,t), and M3(a,b,c). The lower case

letters are instance variables participating in the methods. We see that for two methods
(M1 and M2), their sets of participating variables intersect while the third (M3) doesn’t.
I.e. M1 and M2 share some of the same instance variables while M3 doesn’t share any
instance variables with M1 or M2.
Hence the cohesion is 1/(2−0) = 1/2, which is small.

Conway’s Law:
- Conway's law is an adage stating that organizations design systems which mirror their

own communication structure.
- The law states: “The structure of a software system reflects the structure of the

organization that built it.”

CSCD01 Week 3 Notes
2

Socio-Technical Congruence:
- Product development endeavors involve two fundamental elements:

1. Technical: This involves processes, tasks, technology, etc.
I.e. How people interact with the software.

2. Social: This involves organizations and the individuals involved in the
development process, their attitudes and behaviors.
I.e. How people interact with each other.

- I.e.

- We can measure socio-technical congruence using a coordination requirements
matrix.

Software Architecture:
- The architecture of a system describes its major components, their relationships and

how they interact with each other.
A software architecture defines:

1. The components of the software system.
2. How the components use each other’s functionality and data.
3. How control is managed between the components.

- An example of a software architecture is the client-server architecture. The
client-server architecture is a computing model in which the server hosts, delivers and
manages most of the resources and services to be consumed by the client. This type of
architecture has one or more client computers connected to a central server over a
network or internet connection.
Another example of a software architecture is the 3-layer architecture. The 3-layer
architecture has 3 main components:

1. The presentation layer (UI)
2. The application logic layer
3. The database layer

- Note: MVC is not a 3-layer architecture. A fundamental rule in a 3-layer architecture is
the presentation layer never communicates directly with the database layer. In a 3-layer
architecture all communication must pass through the application logic layer.
Conceptually the three-tier architecture is linear. However, the MVC architecture is
triangular. The view sends updates to the controller, the controller updates the model,
and the view gets updated directly from the model.

CSCD01 Week 3 Notes
3

UML Packages:
- Introduction:
- A package is a namespace used to group together elements that are semantically

related and might change together. It is a general purpose mechanism to organize
elements into groups to provide a better structure for a system model.

- UML package diagrams are structural diagrams used to show the organization and
arrangement of various model elements in the form of packages. A package is a
grouping of related UML elements, such as diagrams, documents, classes, or even other
packages. Each element is nested within the package, which is depicted as a file folder,
and then is arranged hierarchically within the diagram. Package diagrams are most
commonly used to provide a visual organization of the layered architecture within any
UML classifier, such as a software system.

- Package diagrams are UML structure diagrams which show packages and
dependencies between the packages.
Note: Structure diagrams do not utilize time related concepts and do not show the
details of dynamic behavior.

- If a package is removed from a model, so are all the elements owned by the package.
- A package could also be a member of other packages.
- A package in the Unified Modeling Language helps:
- To group elements.
- To provide a namespace for the grouped elements.
- Provide a hierarchical organization of packages.
- Benefits of UML package diagrams:
- They provide a clear view of the hierarchical structure of the various UML elements

within a given system.
- These diagrams can simplify complex class diagrams into well-ordered visuals.
- They offer valuable high-level visibility into large-scale projects and systems.
- Package diagrams can be used to visually clarify a wide variety of projects and systems.
- These visuals can be easily updated as systems and projects evolve.
- Terminology:
- Package: A namespace used to group together logically related elements within a

system. Each element contained within the package should be a packageable element
and have a unique name.

- Packageable element: A named element, possibly owned directly by a package. These
can include events, components, use cases, and packages themselves. Packageable
elements can also be rendered as a rectangle within a package, labeled with the
appropriate name.

- Dependencies: A visual representation of how one element or set of elements depends
on or influences another. Dependencies are divided into two groups: access and import
dependencies.

- Access dependency: Indicates that one package requires assistance from the functions
of another package.
I.e. One package requires help from functions of another package. (Making an API call
for example)

- Import dependency: Indicates that functionality has been imported from one package to
another.
I.e. One package imports the functionality of another package. (Importing a package)

- Notation:
- A package is rendered as a rectangle with a small tab attached to the left side of the top

of the rectangle. If the members of the package are not shown inside the package
rectangle, then the name of the package should be placed inside.

CSCD01 Week 3 Notes
4

E.g.

- The members/elements of the package may be shown within the boundaries of the
package. If the names of the members of the package are shown, then the name of the
package should be placed on the tab.
E.g.

Here, Package org.hibernate contains SessionFactory and Session.
- More examples:

- To show a dependency between 2 packages, you draw a dotted arrow,

, between the 2 packages such that the arrow is pointing
to the independent package.

CSCD01 Week 3 Notes
5

- To show an access dependency, write <<Access>> on the dotted arrow.
E.g.

- To show an import dependency, write <<Import>> on the dotted arrow.
E.g.

- Criteria for Decomposing a System into Packages:
- Different owners - who is responsible for working on which diagrams?
- Different applications - each problem has its own obvious partitions.
- Clusters of classes with strong cohesion - E.g. course, course description, instructor,

student, etc.
- Or: Use an architectural pattern to help find a suitable decomposition such as the MVC

Framework.
- Other Guidelines for Packages:
- Gather model elements with strong cohesion in one package.
- Keep model elements with low coupling in different packages.
- Minimize relationships, especially associations, between model elements in different

packages.
- Namespace implication: An element imported into a package does not know how it is

used in the imported package.
- We want to avoid dependency cycles.

Component Diagrams:
- Introduction:
- Component diagrams are used in modeling the physical aspects of object-oriented

systems that are used for visualizing, specifying, and documenting component-based
systems and also for constructing executable systems through forward and reverse
engineering.

- A component diagram breaks down the actual system under development into various
high levels of functionality.

- Each component is responsible for one clear aim within the entire system and only
interacts with other essential elements on a need-to-know basis.

- Component diagrams can help your team:
- Imagine the system’s physical structure.
- Pay attention to the system’s components and how they relate.
- Emphasize the service behavior as it relates to the interface.

- A component diagram gives a bird’s-eye view of your software system. Understanding
the exact service behavior that each piece of your software provides will make you a

CSCD01 Week 3 Notes
6

better developer. Component diagrams can describe software systems that are
implemented in any programming language or style.

- Notation:
- Component: A rectangle with the component’s name, stereotype text, and icon. A

component represents a modular part of a system that encapsulates its contents and
whose manifestation is replaceable within its environment.
E.g.

- Interface: There are 2 types of interfaces, provided interface and required interface.
Provided interface: A complete circle with a line connecting to a component. Provided
interfaces provide items to components.
Required Interface: A half circle with a line connecting to a component. Required
interfaces are used to provide required information to a provided interface.
E.g.

- Port: A square along the edge of the system or a component. A port is often used to
help expose required and provided interfaces of a component. Ports are used to hook up
other elements in a component diagram.
E.g.

- Association: An association specifies a relationship that can occur between two
instances. You represent an association using a straight line connecting 2 components.
E.g.

- Composition: Composition is a stronger form of aggregation that requires a part
instance to be included in at most one composite at a time. If a composite is deleted, all
of its parts are normally deleted with it. Composition is a type of association. You can
represent a composition using an arrow where the arrowhead is filled in and points to the
parent class.
E.g.

CSCD01 Week 3 Notes
7

- Aggregation: Aggregation implies a relationship where the child class can exist
independently of the parent class. This means that if you remove/delete the parent class,
the child class still exists. It is a special type of association and a weak form of
association. You can represent an aggregation using an arrow where the arrowhead is
not filled in and points to the parent class.
E.g.

- Dependency: A dependency is a relationship that signifies that a single or a set of
model elements requires other model elements for their specification or implementation.
It is denoted as a dotted arrow with a circle at the tip of the arrow.
E.g.

Examples:
- The following 2 UML diagrams show the same thing, a 3-layer application, but the first is

a package diagram while the latter is a component diagram.

CSCD01 Week 3 Notes
8

Layered Systems:
- Examples include operating systems and communication protocols.
- It supports increasing levels of abstraction during design.
- It supports enhancement (adding features and functionalities) and code reuse.
- It can define standard layer interfaces.
- A disadvantage is that it may not be able to define clean layers.

Open vs Closed Layered Architecture:
- Open Layered Architecture:
- A layer can use services from any lower layer.
- There is more compact code as the services of lower layers can be accessed directly.
- Breaks the encapsulation of layers, so there is an increase in dependency between

layers.
- E.g.

- Closed Layered Architecture:
- Each layer only uses services of the layer immediately below it.
- Minimizes dependencies between layers and reduces the impact of changes.
- E.g.

CSCD01 Week 3 Notes
9

- With 2 layers, you have an application layer and a database layer. An example of a
2-layer architecture is a simple client-server model.
E.g.

- With 3 layers, you have a presentation layer (UI), a business logic layer and a database
layer. Here, we separated the business logic to make the UI and database layers more
modifiable.
E.g.

- With 4 layers, you have a presentation layer (UI), an application layer, a domain entity
layer and a database layer. Here, we separated the application from the domain entity.
E.g.

- With partitioned 4 layers, we have separate UIs for each application.
E.g.

CSCD01 Week 3 Notes
10

Pipe and Filters:
- Examples include Unix commands, compilers and signal processing.
- Filters don’t need to know anything about what they’re connected to.
- Filters can be implemented in parallel.
- The behaviour of the system is the composition of the behaviour of the filters.
- UML:

Object Oriented Architecture:
- Examples include abstract data types.
- Has encapsulation and abstraction.
- Can decompose problems into sets of interacting agents.
- Can be single or multi-threaded.
- A disadvantage is that objects must know the identity of the objects they wish to interact

with.
Object Brokers:

- A variant of object oriented architecture.
- It adds a broker between the clients and servers.
- Clients no longer need to know which servers they are using.
- It can have many brokers and many servers.
- A disadvantage is that brokers can become bottlenecks which leads to degraded

performance.
Event Based:

- Examples include debugging systems (listening for particular breakpoints), database
management systems (data integrity checking) and graphical user interfaces.

- The announcers of events don’t need to know who will handle the event.
- It supports re-use and evolution of systems and can add new agents easily.
- A disadvantage is that components have no control over ordering of computations.

Repositories:
- Examples include databases, blackboard expert systems and programming

environments.
- Can choose where the locus of control is.
- Reduces the need to duplicate complex data.
- A disadvantage is that the blackboard can be a bottleneck.

Model-View-Controller (MVC):
- There is one central model with many viewers/views.
- Each view has an associated controller.
- The controller handles updates from the user of the view.
- Changes to the model are propagated to all the views.

CSCD01 Week 3 Notes
11

Program Types:
- S-Type Programs (Specifiable):
- The problem can be stated formally and completely.
- Acceptance: Is the program correct according to its specification?
- Evolution is not relevant as a new specification defines a new problem.
- S-Type software is one where specification is clear and detailed before the development

even begins. Thanks to this detailed specification, it is clear what the solution should be
and implementing it is trivial.

- S-programs are programs whose function is formally defined by and derivable from a
specification.

- An S-program may be changed to improve its clarity or its elegance, to decrease
resource usage when the program is executed, but any such changes must not affect
the mapping between the input and output it achieves in execution.

- In S-programs, judgments about the correctness and the value of the programs relate
only to its specification.

- E.g. Create a function that adds 2 numbers.
- P-Type Programs (Problem-solving):
- Here, we have an imprecise statement of a real-world problem.
- Acceptance: Is the program an acceptable solution to the problem?
- The software may continuously evolve as the solution is never perfect and can always

be improved and the real world changes, so the problem changes.
- P-programs are programs for which the problem may be precisely formulated, but for

which the solution must inevitably reflect an approximation of the real world.
- E.g. A program to play chess.
- E-Type Programs (Embedded):
- Here, the software becomes part of the world that it models.
- Acceptance: Depends entirely on opinion and judgment.
- This software is inherently evolutionary as changes in the software and world affect each

other.
- E-programs are those programs that mechanize a human or societal activity.
- The program has become a part of the world it models.
- E.g. Operating Systems, business administration software, inventory management, etc.

Laws of Program Evolution:
- Continuing Change:
- Any software that reflects some external reality undergoes continual change or becomes

progressively less useful.
- The change continues until it is judged that it is more cost effective to replace the

system.
- Increasing Complexity:
- As software evolves, its complexity increases unless steps are taken to control it.
- Fundamental Law of Program Evolution:
- Software evolution is self-regulating with statistically determinable trends and invariants.
- Conservation of Organizational Stability:
- During the active life of a software system, the work output of a development project is

roughly consistent, regardless of resources.
- Conservation of Familiarity:
- The amount of change in successive releases is roughly constant.

CSCD01 Week 3 Notes
12

User Requirements Always Increase:

Software Geriatrics:
- Causes of software aging:
- Failure to update the software to meet changing needs. Customers will switch to a new

product if the benefits outweigh the switching costs.
- Changes to software tend to reduce coherence and increase complexity.
- Costs of software aging:
- Owners of aging software may find it hard to keep up with the marketplace.
- Deterioration in space/time performance due to deteriorating structure.
- Aging software gets more buggy and each bug fix adds more errors than it fixes.
- Ways of increasing longevity:
- Design for change.
- Document the software carefully.
- Requirements and designs should be reviewed by those responsible for its maintenance.
- Software rejuvenation.

Reducing Maintenance Costs:

CSCD01 Week 3 Notes
13

Factors That Drive The Cost of Maintaining Software:
- Adaptive Maintenance:

- Accounts for 25% of the total maintenance cost.
- Arises from modifying the software after its delivery to ensure that the product

remains usable in a changing environment.
- Corrective Maintenance:

- Accounts for 20% of the total maintenance cost.
- Arises from resolving issues you identify during the initial deployment or release.

- Perfective Maintenance:
- Accounts for 5% of the total maintenance cost.
- Arises from improving software to make it perform efficiently.

Why Maintenance is Hard:
- Poor code quality
- Lack of knowledge of the application domain
- Lack of documentation
- Lack of glamour

Rejuvenation:
- Reverse Engineering:
- Includes re-documentation and design recovery.
- Restructuring:
- Includes refactoring (no changes to functionality) and revamping (only the ui is changed).
- Re-Engineering:
- Real changes are done to the code.
- It is usually done as a round trip:

Design recovery → Design improvement → Re-implementation
Program Comprehension:

- During maintenance, programmers study the code about 1.5 times as long as the
documentation and spend as much time reading code as editing it.

- Experts have many knowledge chucks.
- Experts follow dependency links while novices read sequentially.
- Much of the knowledge comes from outside the code.

CSCD01 Week 4 Notes
1

Review of UML Diagrams:
- Uses of UML:

- As a sketch:
- Can be used to sketch a high level view of the system.
- Forward engineering: Describes the concepts we need to implement.
- Reverse engineering: Explains how parts of the code work.
- As a blueprint:
- Should be complete and describes the system in detail.
- Forward engineering: Model as a detailed specification for the programmer.
- Reverse engineering: Model as a code browser.
- Tools provide both forward and reverse engineering to move back and forth

between the program and the code.
- As a programming language:
- UML diagrams can be automatically compiled into working code using

sophisticated tools, such as Visual Paradigm.
- Things to Model:

- Structure of the code:
- Code dependencies.
- Components and couplings.
- Behaviour of the code:
- Execution traces.
- State machine models of complex objects.
- Function of the code:
- What function does it provide to the user?

Interaction Diagrams:
- Interaction diagrams describe how a group of objects collaborate in some behavior.

They commonly contain objects, links and messages.
- Objects communicate with each other through function/method calls called messages.
- An interaction is a set of messages exchanged among a set of objects in order to

accomplish a specific goal.
- Interaction diagrams:

- Are used to model the dynamic aspects of a system.
- Aid the developer in visualizing the system as it is running.
- Are storyboards of selected sequences of message traffic between objects.

- After class diagrams, interaction diagrams are possibly the most widely used UML
diagrams.

- A lifeline represents a single participant in an interaction. It describes how an instance
of a specific classifier participates in the interaction. A lifeline represents a role that an
instance of the classifier may play in the interaction.

- A message is the vehicle by which communication between objects is achieved. A
function/method call is the most common type of message. The return of data as a result
of a function call is also considered a message.

- A message may result in a change of state for the receiver of the message.
- The receipt of a message is considered an instance of an event.
- Interactions model the dynamic aspects of a system by showing the message traffic

between a group of objects. Showing the time-ordering of the message traffic is a central
ingredient of interactions.

- Graphically, a message is represented as a directed line that is labeled.
- The sequence diagram is the most commonly used UML interaction diagram. Typically

a sequence diagram captures the behavior of a group of objects in a single scenario.

CSCD01 Week 4 Notes
2

Other types of interaction diagrams include communication diagrams and timing
diagrams. Out of those three, sequence diagrams are preferred for their simplicity.

- Interaction Frame Operators:

Operator Name Meaning

Opt Option An operand is executed if the condition is true. (E.g. If-else)

Alt Alternative The operand, whose condition is true, is executed. (E.g. Switch)

Loop Loop It is used to loop an instruction for a specified period.

Break Break It breaks the loop if a condition is true or false, and the next
instruction is executed.

Ref Reference It is used to refer to another interaction.

Par Parallel All operands are executed in parallel.

Region Critical Region Only 1 thread can execute this frame at a time.

Neg Negative Frame shows an invalid interaction.

Sd Sequence
Diagram (Optional) Used to surround the whole diagram.

- Parallel Example: The interaction operator par defines potentially parallel execution of
behaviors of the operands of the combined fragment. Different operands can be
interleaved in any way as long as the ordering imposed by each operand is preserved.

CSCD01 Week 4 Notes
3

- Region Example: The interaction operator region defines that the combined fragment
represents a critical region. A critical region is a region with traces that cannot be
interleaved by other occurrence specifications on the lifelines covered by the region.

- Negative Example: The interaction operator neg describes a combined fragment of
traces that are defined to be negative (invalid). Negative traces are the traces which
occur when the system has failed. All interaction fragments that are different from the
negative are considered positive, meaning that they describe traces that are valid and
should be possible.

CSCD01 Week 4 Notes
4

Sequence Diagrams:
- Introduction:
- A sequence diagram depicts interactions between objects in a sequential order. The

purpose of a sequence diagram in UML is to visualize the sequence of a message flow
in the system. The sequence diagram shows the interaction between two lifelines as a
time-ordered sequence of events.

- A sequence diagram shows an implementation of a scenario in the system. Lifelines in
the system take part during the execution of a system.

- In a sequence diagram, a lifeline is represented by a vertical bar.
- A message flow between two or more objects is represented using a vertical dotted line

which extends across the bottom of the page.
- Sequence diagrams are built around an X-Y axis.
- Objects are aligned at the top of the diagram, parallel to the X axis.
- Messages travel parallel to the X axis.
- Time passes from top to bottom along the Y axis.
- Sequence diagrams most commonly show relative timings, not absolute timings.
- Links between objects are implied by the existence of a message.
- Example of a sequence diagram:

CSCD01 Week 4 Notes
5

- Example of a sequence diagram:

- Benefits of a sequence diagram:
- Sequence diagrams are used to explore any real application of a system.
- Sequence diagrams are used to represent the message flow from one object to another.
- Sequence diagrams are easy to maintain and generate.
- Sequence diagrams can be easily updated according to the changes within a system.
- Sequence diagrams allow both reverse and forward engineering.
- Drawbacks of a sequence diagram:
- Sequence diagrams can become complex when too many lifelines are involved in the

system.
- If the order of message sequence is changed, then incorrect results are produced.
- Each sequence needs to be represented using different message notation, which can be

a little complex.
- The type of message decides the type of sequence inside the diagram.
- When to use sequence diagrams:

1. Comparing Design Options:
- Shows how objects collaborate to carry out a task.
- Graphical form shows alternative behaviours.

2. Assessing Bottlenecks
3. Explaining Design Patterns:

- Enhances structural models.
- Good for documenting behaviour of design features.

4. Elaborating Use Cases:
- Shows how the user expects to interact with the system.
- Shows how the user interface operates.

- Modelling Control Flow By Time:
- Determine what scenarios need to be modeled.
- Identify the objects that play a role in the scenario.
- Lay the objects out in a sequence diagram left to right, with the most important objects

on the left.
Most important in this context means objects that are the principle initiators of events.

CSCD01 Week 4 Notes
6

- Draw in the message arrows, top to bottom.
Adorn the message as needed with detailed timing information.

- Style Guide for Sequence Diagrams:
1. Spatial Layout:

- Strive for left-to-right ordering of messages.
- Put proactive actors on the left.
- Put reactive actors on the right.

2. Readability:
- Keep diagrams simple.
- Don’t show obvious return values.
- Don’t show object destruction.

3. Usage:
- Focus on critical interactions only.

4. Consistency:
- Class names must be consistent with class diagram.
- Message routes must be consistent with navigable class associations.

Use Case Diagrams:
- Introduction:
- A use case diagram is the primary form of system/software requirements for a new

software program.
- Use cases specify the expected behavior (what), and not the exact method of making it

happen (how).
- A key concept of use case modeling is that it helps us design a system from the end

user's perspective. It is an effective technique for communicating a system’s behavior in
the user's terms.

- Use case diagrams are used to gather the requirements of a system including internal
and external influences.

- A use case:
- Specifies the behavior of a system or some subset of a system.
- Is a set of scenarios tied together by a common user goal.
- Does not indicate how the specified behavior is implemented, only what the

behavior is.
- Performs a service for some user of the system, called an actor.

- A use case represents a functional requirement of the system. A requirement:
- Is a design feature, property, or behavior of a system.
- States what needs to be done, but not how it is to be done.
- Is a contract between the customer and the developer.
- Can be expressed in various forms, including use cases.

- In brief, the purposes of use case diagrams are as follows:
- Used to gather the requirements of a system.
- Used to get an outside view of a system.
- Identify the external and internal factors influencing the system.
- Show the interaction among the requirements of the actors.

- An actor:
- Is a role that the user plays with respect to the system. The user does not have to

be human.
- Is associated with one or more use cases.
- Is most typically represented as a stick figure of a person labeled with its role

name. Note that the role names should be nouns.
- May exist in a generalization relationship with other actors in the same way as

classes may maintain a generalization relationship with other classes.

CSCD01 Week 4 Notes
7

- Note: Use cases diagrams do not show the order in which the steps are performed to
achieve the goals of each use case. It only shows the relationship between actors,
systems and use cases.

- Use cases are a technique for capturing the functional requirements of a system. Use
cases work by describing the typical interactions between the users of a system and the
system itself, providing a narrative of how the system is used.

- Use case development process:
1. Develop multiple scenarios.
2. Distill the scenarios into one or more use cases where each use case represents

a functional requirement.
3. Establish associations between the use cases and actors.

- A use case is graphically represented as an oval with the name of its functionality written
inside. The functionality is always expressed as a verb or a verb phrase.

- A use case may exist in relationships with other use cases much in the same way as
classes maintain relationships with other classes.

- As stated earlier, a use case by itself does not describe the flow of events needed to
carry out the use case. The flow of events can be described using informal text,
pseudocode, or activity diagrams.
I.e. You can attach a note to a use case to show the flow of the event. Be sure to
address exception handling when describing the flow of events.
E.g.

- Relationships Between Use Cases:
- A use case may have a relationship with other use cases.
- Generalization between use cases is used to extend the behavior of a parent use case.
- An <<include>> relationship between use cases means that the base use case

explicitly incorporates the behavior of another use case at a location specified in the
base.
Note: Sometimes <<uses>> is used instead of <<include>>.
When a use case is depicted as using the functionality of another use case, the
relationship between the use cases is named as an <<include>> or <<uses>>
relationship.

CSCD01 Week 4 Notes
8

- An <<extend>> relationship between use cases means that the base use case
implicitly incorporates the behavior of another use case at a location specified indirectly
by the extending use case.

- Extended behavior is optional behavior, while included behavior is required behavior.
I.e. Extended means “may use” while include/uses means “will use”.

- Extend occurs when one use case adds a behaviour to a base use case while include
occurs when one use case invokes another.

- Actor Classes:
- Identify classes of actors.
- Actors inherit use cases from the class.
- Describing Use Cases:
- For each use case, a flow of events document, written from the actor’s point of view,

describes what the system must provide to the actor when the use case is executed.
- Typical contents:

- How the use case starts and ends.
- Normal flow of events.
- Alternate flow of events.
- Exceptional flow of events.

- Documentation style:
- Activity Diagrams - Good for business process.
- Collaboration Diagrams - Good for high level design.
- Sequence Diagrams - Good for detailed design.

- Finding Use Cases:
- Noun phrases may be domain classes.
- Verb phrases may be operations and associations.
- Possessive phrases may indicate attributes.
- For each actor, ask the following questions:
1. What functions does the actor require from the system?
2. What does the actor need to do?
3. Does the actor need to read, create, destroy, modify or store information in the system?
4. Does the actor have to be notified about events in the system?
5. Does the actor need to notify the system about something?
6. What do these events require in terms of system functionality?
7. Could the actor’s daily work be simplified or made more efficient through new functions

provided by the system?

CSCD01 Week 5 Notes
1

Relationship with Customers:
- Customer Specific:

- One customer with a specific problem.
- The customer may be another company with a contractual agreement or a

division within the same company.
- Market-based:

- Selling the product to a general market.
- In some cases, the product must generate customers.
- The marketing team may act as a substitute customer.

- Community-based:
- Intended as a general benefit to some community.
- Examples include open-source tools and tools for scientific research.

- Hybrid:
- A mix of the above.

Project Planning:
- Parts of Project Planning:
- Given:

- A list of customer requirements.
- Examples include a set of use cases or a set of change requests.

- Estimate:
- How long each one will take to implement (cost).
- How important each one is (value).

- Plan:
- Which requests should be included in the next release.

- Complication:
- Customers care about other stuff, such as security and quality, too.

- Key Principles of Management:
- A manager can control 4 things:

1. Resources - Can get more money, personnel, etc
2. Time - Can vary the schedule and delay milestones
3. Product - Can vary the amount of functionality
4. Risk - Can decide which risks are acceptable

- Approach:
- Understand the goals and objectives.
- Understand the constraints.
- Plan to meet the objectives within the constraints.
- Monitor and adjust the plan.
- Preserve a calm, productive, positive work environment.

- Note: You cannot control what you cannot measure.
- Strategies:
- Fixed Product:

1. Identify the customer requirements.
2. Estimate the size of software needed to meet them.
3. Calculate the time required to build the software.
4. Get the customer to agree to the cost and schedule.

- Fixed Schedule:
1. Fix a date for the next release.
2. Obtain a prioritized list of requirements.
3. Estimate the effort for each requirement.
4. Select requirements from the list until there’s no more left or you don’t think you

can work on more tasks.

CSCD01 Week 5 Notes
2

- Fixed Cost:
1. Agree with the customer on how much they wish to spend.
2. Obtain a prioritized list of requirements.
3. Estimate the cost for each requirement.
4. Select requirements from the list until the “cost” is used up.

- Estimating Effort - Constructive Cost Model (COCOMO):
- Predicts the cost of a project from a measure of size (lines of code).
- The basic model is: E = aLb

E = effort
a & b = project specific folders
L = lines of code

- Modelling process:
1. Establish the type of project (organic, semidetached, embedded, etc).

This gives sets of values for a and b.
2. Identify the component modules and estimate L for each module.
3. Adjust L according to how much code is reused.
4. Compute E using the formula above.
5. Adjust E according to the difficulty of the project.
6. Compute time using T = cEd, where c and d are provided for different project

types, like a and b.
- Estimating Size - Function Points:
- Used to calculate the size of software from a statement of the problem.
- Tries to address the variability in lines of code estimates used in models such as

COCOMO.
- Basic model is: FP = a1I + a2O + a3E + a4L + a5F
- Each ai is a weighting factor for their respective metric.
- I is the number of user inputs (data entry).
- O is the number of user outputs (reports, screens, error messages).
- E is the number of user queries.
- L is the number of files.
- F is the number of external interfaces.
- Three-Point Estimating:
- W = worst possible case
- M = Most likely case
- B = Best possible case

- E =
𝑖

∑ 𝑊𝑖 + 4𝑀𝑖 + 𝐵𝑖
6

- Story Points:
- We need a common way to compare story sizes.
- It can be hard to find common ground between a programming story and a database

management story.
- Story points are a relative measure of a feature’s size or complexity.

They are not durations nor a commitment to when a story will be completed.
Different teams have different velocities, so they may complete stories at different rates
depending on experience.

- A good tool to do the estimation is planning poker. It is a series similar to the Fibonacci
Series that can be a useful range for story points. Here, each number is almost the sum
of the two preceding numbers: 0, 1, 2, 3, 5, 8, 13, 20, 40, 100.

CSCD01 Week 5 Notes
3

- 0-points estimates are used for trivial tasks that require little effort, though too many
zero-pointers can add up.

- Only use numbers within the set and avoid averages. We avoid averages because if a
user story turns out to be harder than expected, then the people who picked a higher
number will say “I told you” to the people who picked a lower number. The average does
not convince other people.

- What happens is this:
1. A feature is mentioned.
2. Each person in the team takes a number from the set, but doesn't show/tell

anyone else yet.
They choose the number based on how difficult they think implementing the
feature will be.
A feature with point 0 means that it requires very little effort.

3. After 3 seconds, everyone shows their number.
4. If everyone or most people have the same number, it’s good.
5. If everyone or most people have different numbers, then each person has to

defend why they picked their number.
Once the discussion has been carried out, there is a second round of voting.

6. The process repeats until everyone agrees.
If people consistently do not agree with one another, then the user story is not a
good user story. This is because one of the features of a user story is that it must
be estimable.

- Powers of 2 is also an effective tool to do the estimation.
- Ideal Days:
- Another unit of measure. It can be used as a transition for teams that are new to agile.
- It represents an ideal day of work with no interruptions (phone calls, questions, broken

builds, etc.)
However, it doesn’t mean an actual day of work to finish.

- Tasks are estimated in hours.
An estimation is an ideal time (without interruptions/problems).
Smaller task estimates are more accurate than large.

- After all tasks have been estimated, the hours are totaled up and compared against the
remaining hours in the sprint backlog. If there is room, the PBI is added and the team
commits to completing the PBI.
If the new PBI overflows the sprint backlog, the team does not commit and

- the PBI can be returned to the product backlog and a smaller PBI chosen instead
or

- we can break the original PBI into smaller chunks or
- we can drop an item already in the backlog to make room or
- the product owner can help decide the best course of action.

- Tracking Progress:
- Information about progress, impediments and sprint backlog of tasks needs to be readily

available.
- How close a team is to achieving their goals is also important.
- Scrum employs a number of practices for tracking this information:

1. Task cards
2. Burndown charts
3. Task boards
4. War rooms (standups)

CSCD01 Week 5 Notes
4

- Burndown Charts:
- Example of a burndown chart:

- Indicates how much work has been done in terms of how many user stories have been
completed and when.

- Burndown charts are on Jira.
- On the beginning of the sprint, on the vertical axis, is the number of user stories you’d

like to implement.
- At the end of the sprint, the number of user stories should be decreased to 0. That

means all the stories have been implemented.
- A burndown chart is a graphical representation of work left to do versus time. It is often

used in agile software development methodologies such as Scrum.
- Typically, in a burndown chart, the outstanding work is often on the vertical axis, with

time along the horizontal. It is useful for predicting when all of the work will be
completed.

- Taskboard:
- Example of a taskboard:

- Both taskcards and taskboards are on Jira.
- The leftmost column are the stories to be implemented and there are 3 columns

describing the progress of the tasks.

https://www.visual-paradigm.com/scrum/what-is-agile-software-development/

CSCD01 Week 5 Notes
5

- In scrum the task board is a visual display of the progress of the scrum team during a
sprint. It presents a snapshot of the current sprint backlog allowing everyone to see
which tasks remain to be started, which are in progress and which are done.

- Simply put, the task board is a physical board on which the user stories which make up
the current sprint backlog, along with their constituent tasks, are displayed. Usually this
is done with index cards or post-it notes.

- The task board is usually divided into the columns listed below.
Stories: This column contains a list of all the user stories in the current sprint backlog.
Not started: This column contains sub tasks of the stories that work has not started on.
In progress: All the tasks on which work has already begun.
Done: All the tasks which have been completed.

Risk Management:
- Introduction to Risk:
- Risk is the possibility of suffering loss.
- Risk itself is not bad; it’s essential to progress.
- The challenge is to manage the amount of risk.
- Risk Exposure (RE):
- RE = Probability of risk occurring * Total loss if risk occurs
- Calculates the effective current cost of a risk and can be used to prioritize risks that

require countermeasures.
I.e. Can help find which countermeasures work best.

- Higher RE means more serious risk.
- Risk Reduction Leverage (RRL):

- RRL =
𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑅𝑖𝑠𝑘 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
𝐶𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒

- Calculates a value for the return on investment for a countermeasure and can be used to
prioritize possible countermeasures.

- Higher RRL indicates more cost-effective countermeasures.
- Risk Assessment:
- Quantitative:

- Measures risk exposure using standard cost and probability measures.
- Note: Probabilities are rarely independent.

- Qualitative:
- Create a risk exposure matrix.
- E.g. for NASA

CSCD01 Week 5 Notes
6

- Top Software Engineering Risks With Countermeasures:
Risks Countermeasures

Personnel Shortfalls Use top talent.
Team building.
Training.

Unrealistic schedule/budget Multisource estimation.
Designing to cost.
Requirements scrubbing.

Developing the wrong software function Better requirements analysis.
Organizational/Operational analysis.

Developing the wrong user interface Prototypes, scenarios, task analysis.

Gold plating
Gold plating is the phenomenon of working on a
project or task past the point of diminishing returns.
For example, after having met the requirements,
the project manager or the developer works on
further enhancing the product, thinking the
customer will be delighted to see additional or more
polished features, rather than what was asked for
or expected. The customer might be disappointed
in the results, and the extra effort by the developer
might be futile.

Requirements scrubbing.
Cost benefit analysis.
Designing to cost.

Continuing stream of requirement changes High change threshold.
Information hiding.
Incremental development.

Shortfalls in externally furnished components Early benchmarking.
Inspections, compatibility analysis.

Shortfalls in externally performed tasks Pre-award audit.
Competitive designs.

Real-time performance shortfalls Targeted analysis.
Simulations, benchmarks, models.

Straining computer science capabilities Technical analysis.
Checking scientific literature.

- Principles of Risk Management:
- Global perspective:

- View software in the context of a larger system.
- For any opportunity, identify both potential value and potential impacts of adverse

results.
- Forward looking view:

- Anticipate possible outcomes.
- Identify uncertainty and manage resources accordingly.

CSCD01 Week 5 Notes
7

- Open communications:
- Free-flow information at all project levels.
- Value the individual voice. Everyone has unique knowledge and insights.

- Integrated management:
- Project management is risk management.

- Continuous process:
- Continually identify and manage risks.
- Maintain constant vigilance.

- Shared product vision:
- Everyone understands the mission.
- Focus on results.

- Teamwork:
- Work cooperatively to achieve the common goal.

- Continuous Risk Management:
- Control:

- Correct for deviations from the risk mitigation plans.
- Identify:

- Search for and locate risks before they become problems.
- Use systematic techniques to discover risks.

- Analyze:
- Transform risk data into decision-making information.
- For each risk, evaluate:

- Probability
- Impact
- Timeframe

- Classify and prioritize risks.
- Plan:

- Choose risk mitigation actions.
- Track:

- Monitor risk indicators.
- Reassess risk.

- Communicate:
- Share information on current and emerging risks.

CSCD01 Week 7 Notes
1

Project Management:
- Project Management Tools:
- Work Breakdown Structure:
- A work breakdown structure (WBS) is a hierarchical decomposition of the total scope

of the work to be carried out by the project team to accomplish the project objectives and
create the required deliverables.

- E.g.

- Gantt Charts:
- A Gantt chart is a bar chart that provides a visual view of the tasks scheduled over time.

It is used for planning projects of all sizes, and it is a useful way of showing what work is
scheduled to be done on a specific day. It can also help you view the start and end dates
of a project in one simple chart.

- E.g.

- Notations:
- Bars show the duration of tasks.
- Triangles show milestones.
- Vertical lines show dependencies.

CSCD01 Week 7 Notes
2

- PERT Charts:
- PERT stands for Program Evaluation and Review Technique. A PERT chart illustrates a

project as a network diagram. The U.S. Navy created this tool in the 1950s as they
developed the Polaris missile.

- Project managers create PERT charts to gauge the minimum time necessary to
complete the project, analyze task connections, and assess project risk. PERT charts
make it easy to visualize and organize complex projects by illustrating the dependencies
between each step in the project.

- PERT charts are best utilized by project managers at the beginning of a project to
ensure that it is accurately scoped. This tool gives users a birds-eye view of the entire
project before it's started to avoid potential bottlenecks. While PERT charts can be used
during the project's implementation to track progress, they are not flexible enough for
teams to adapt them to small changes when team members are confronted with
roadblocks.

- Advantages of using PERT charts
- A PERT chart allows managers to evaluate the time and resources necessary to

manage a project. This evaluation includes the ability to track required assets
during any stage of production in the course of the entire project.

- PERT analysis incorporates data and information from multiple departments. This
combining of information encourages department responsibility and it identifies all
responsible parties across the organization. It also improves communication
during the project and it allows an organization to commit to projects that are
relevant to its strategic positioning.

- Finally, PERT charts are useful for what-if analyses. Understanding the
possibilities concerning the flow of project resources and milestones allows
management to achieve the most efficient and useful project path.

- Disadvantages of using PERT charts:
- The use of a PERT chart is highly subjective and its success depends on the

management’s experience. These charts can include unreliable data or
unreasonable estimates for cost or time for this reason.

- PERT charts are deadline-focused and they might not fully communicate the
financial positioning of a project. Because a PERT chart is labor-intensive, the
establishment and maintenance of the information require additional time and
resources. Continual review of the information provided, as well as the
prospective positioning of the project, is required for a PERT chart to be valuable.

- A critical path is the sequential activities from start to the end of a user story. Although
many user stories only have one critical path, some may have more than one critical
paths depending on the flow logic used in the user story implementation.

- A critical path is determined by identifying the longest stretch of dependent activities and
measuring the time required to complete them from start to finish.

- If there is a delay in any of the activities under the critical path, there will be a delay of
the user story delivery.

- Key steps in a critical path method:
1. Activity specification:
- Break down a user story in a list of activities.
2. Activity sequence establishment:
- Need to ask three questions for each task of your list.

1. Which tasks should take place before this task happens?
2. Which tasks should be completed at the same time as this task?
3. Which tasks should happen immediately after this task?

https://www.lucidchart.com/pages/pert-charts

CSCD01 Week 7 Notes
3

3. Network diagram:
- Once the activity sequence is correctly identified, the network diagram can be

drawn.
4. Identify critical path:
- The critical path is the longest path of the network diagram. If an activity of this

path is delayed, the user story will be delayed.
- Tasks on the critical path have to start as early as possible or else the whole project will

be delayed. However tasks not on the critical path have some flexibility on when they are
started. This flexibility is called the slack time.

- E.g.

- Notation:
- Nodes indicate milestones.
- Edges indicate dependencies and are labelled with the time to complete it.

- Burn-up Charts:
- A burnup chart is a tool used to track how much work has been completed, and show

the total amount of work for a project or iteration. Typically, in a burnup chart, the
outstanding work is often on the vertical axis, with time along the horizontal. It is useful
for predicting when all of the work will be completed.

- Burnup charts and burndown charts are quite similar and display much of the same
information. Burndown charts are simple and easy for project members and clients to
understand. A line representing the remaining project work slowly decreases and
approaches zero over time. However, this type of chart doesn’t show clearly the effects
of scope change on a project. If a client adds work mid-project the scope change would
appear as negative progress by the development team on a burndown chart.

- In contrast, scope changes are immediately evident on burnup charts. When new work is
added the total work line will clearly show the increase in scope and total work.

- E.g.

CSCD01 Week 7 Notes
4

- Meetings as a management tool:
- Meetings are expensive, so don’t waste people’s time and the company’s money with

unnecessary meetings. However, meetings are necessary for communications.
- Do’s/Don'ts for meetings:

- Do announce details in advance.
I.e. The purpose of the meeting, the duration of the meeting, who should join, etc.

- Do lay out a clear and concise agenda for the meeting.
- Do identify a person who will lead the meeting.
- Do identify a person who will take notes for the meeting.
- Do not waste people’s time by showing up unprepared (especially if you’re in

charge).
- Do not let discussion get sidetracked.
- Do not let one one or two people dominate the meeting.

Requirement Analysis:
- Requirements as Theories:

- Starting point:
- Given a vague request for a new feature from users of your software:

1. Identify the problem:
- Find out what the goal is.
2. Scope the problem:
- Find out what new functionalities are needed.
3. Identify solution scenarios:
- Find out how users will interact with the software to solve the problem.
4. Map onto the architecture:
- Find out how the new functionalities will be met.

- Given a problem, requirements analysts must identify the following:
- Which problem(s) need to be solved?
- Where are the problem(s)?
- Whose problem is it?
- Why does it need solving?
- When does it need solving?
- What might prevent us from solving it?
- How might a software system help?

CSCD01 Week 7 Notes
5

- Terminology:
- Application Domain: Things the software cannot observe directly. Includes domain

properties and requirements.
- Domain Properties: Things in the application domain that are true, whether or not we

ever build the proposed system.
- Requirements: Things in the application domain that we wish to be made true, by

delivering the proposed system.
- Software Domain: Things private to the software. Includes computers and programs.
- Specification: A description of the behaviours the program must have in order to meet

the requirements.

- Verification: The program running on a particular computer satisfies the specification,
and the specification, in the context of the given domain properties, satisfies the
requirement.

- Validation: We discovered all the important requirements and properly understood the
relevant domain properties.

- Observations:
- Analysis isn’t necessarily a sequential process. Rewriting the problem statement can be

useful at any stage of development.
- The problem statement will be imperfect. Models are approximations, not the actual

thing. They will contain some inaccuracies and omit some information. We need to
assess the risk that these will cause serious problems.

- Perfecting a specification may not always be cost effective.
- The problem statement should never be treated as fixed. Change is inevitable and

therefore must be planned for.

CSCD01 Week 7 Notes
6

- Stakeholders:
- Stakeholder analysis is identifying all the people who must be consulted during

information acquisition.
- Type of stakeholders:

- Users - Concerned with the features and functionalities of the new system.
- Customers - Wants to get the best value for money invested.
- Business analysts/Marketing team - Wants to make sure that we’re doing better

than the competition.
- Training and user support staff - Want to make sure the new system is usable

and manageable.
- Technical authors - Will prepare user manuals and other documentation for the

new system.
- System analysts - Want to get the requirements right.
- Designer - Want to build a perfect system or reuse existing code.
- Project manager - Wants to complete the project on time, on budget and with all

objectives met.
Goals:

- A goal is a stakeholder’s objective for the system.
- A goal model is a hierarchy of goals that relates the high-level goals to low-level system

requirements.
- Hard goals describe the functions the system will perform.

E.g. The system collects timetables from users.
- Soft goals describe the desired system qualities. Soft goals cannot be fully satisfied.

E.g. The system should be reliable.
E.g. The system should be of high quality.

- Goal elaboration:
- “Why” questions explore higher goals (context).
- “How” questions explore lower goals (operations).
- “How else” questions explore alternatives.

- Relationships between goals:
- A goal helps another goal. (+)
- A goal hurts another goal. (-)
- A goal makes another goal. (++)
- A goal breaks another goal. (--)

- Approach for identifying stakeholder goals:
- Focus on why a system is required.
- Express the “why” as a set of stakeholder goals.
- Use goal refinement to arrive at specific requirements.
- Document, organize and classify goals.
- Refine, elaborate and operationalize goals.

CSCD01 Week 8 Notes
1

Robustness Analysis:
- Law of Demeter:
- The Law of Demeter states that a module should not have the knowledge on the inner

details of the objects it manipulates. In other words, a software component or an object
should not have knowledge of the internal working of other objects or components.

- The Law of Demeter reduces dependencies and helps build components that are loosely
coupled for code reuse, easier maintenance, and testability.

- I.e.
A method, M, of an object, O, can only call methods of:

- O itself
- M’s parameters
- Any objects created by M
- O’s direct component objects

M cannot call methods of an object returned by another method call.
- Note: The programmer’s rule of thumb is to use 1 dot.

E.g. Instead of Customer.PayPalAccount.CreditCard.Subtract(total), use
Customer.getPayment(total).

- Robustness Analysis:
- Robustness analysis is a way of analyzing your use case model. Robustness analysis

provides an approach to the structuring of problem situations in which uncertainty is
high, and where decisions can or must be staged sequentially. The specific focus of
robustness analysis is on how the distinction between decisions and plans can be
exploited to maintain flexibility. These are classified into boundary objects , entity
objects , and control objects .

- Boundary Objects:
- Used by actors when communicating with the system.
- Represents the interfaces between the actors and the system.
- The “view” part of MVC architecture.

- Entity Objects:
- Usually objects from the domain model. They are objects representing stored data.
- Manages the information the system needs to provide the required functionality.
- The “model” part of the MVC architecture.

- Control Objects:
- The “glue” between boundary objects & entity objects. It captures business rules and

policies and represents the use case logic and coordinates the other classes.
- The “controller” part of the MVC architecture.
- Note: It is often implemented as methods of other objects.

CSCD01 Week 8 Notes
2

- Robustness Diagram – 4 Connection Rules:
- Boundary objects and entity objects are nouns while controllers are verbs. Nouns can’t

talk to other nouns, but verbs can talk to either nouns or verbs. Here are the four basic
connection rules which should always be mind:

1. Actors can only talk to boundary objects.
2. Boundary objects can only talk to controllers and actors.
3. Entity objects can only talk to controllers.
4. Controllers can talk to boundary objects, entity objects, and other controllers, but

not to actors.
- E.g.

- Why Use Robustness Analysis:

1. Bridges the gap between design and requirements.
2. Sanity Check:

- Tests the language in the use case description.
- Nouns from the use case get mapped onto objects.
- Verbs from the use case get mapped onto actions.

3. Completeness Check:
- Discover the objects you need to implement the use case.
- Identify alternative courses of action.

4. Object Identification:
- Decide which methods belong to which objects.

CSCD01 Week 8 Notes
3

- Benefits of Robustness Analysis:
1. Forces a consistent style for use cases.
2. Forces a correct ̒voiceʼ for use cases.
3. Sanity and completeness check for use cases.
4. Creates syntax rules for use case descriptions.
5. Quicker and easier to read than sequence diagrams.
6. Encourages use of Model-View-Controller (MVC) pattern.
7. Helps build layered architectures e.g presentation layer, domain layer, repository

layer.
8. Checks for reusability across use cases before doing detailed design.
9. Provides traceability between userʼs view and design view.
10. Plugs semantic gap between requirements and design.

- Constructing a Robustness Diagram:
1. Add a boundary element for each major UI element. Not at the level of individual

widgets though.
2. Add controllers:

- One to manage each use case.
- One for each business rule.
- Another for each activity that involves coordination between several other

elements.
3. Add an entity for each business concept.

Verification and Validation (V&V):
- Verification:
- Verification is testing that your product meets the specifications/requirements you have

written.
I.e. Are we building the system right?
It is ensuring that the software to be built is actually what the user wants.

- I.e.

- Validation:
- Validation is testing how well you addressed the business needs that caused you to

write those requirements. It is also sometimes called acceptance or business testing.
I.e. Are we building the right system?
It is ensuring that the software runs correctly.

CSCD01 Week 8 Notes
4

- Understanding validation:

- Validation techniques:

- Choice of Techniques:

CSCD01 Week 8 Notes
5

- Roles for Independent V&V:
- V&V is usually performed by an independent contractor.
- Independent verification and validation involves V&V done by a third party organization

not involved in the development of the product. The main check performed is whether
user requirements are met alongside ensuring that the product is structurally sound and
built to the required specifications. Independent V&V fulfills the need for an independent
technical opinion.

- V&V costs between 5% and 15% of development costs, but a study by NASA showed
that its return on investment is fivefold. Bugs/errors are found earlier, making them
easier to fix. The specifications are clearer. Developers are more likely to use better
practices.

- 3 types of independence:
1. Managerial Independence:

- Separate responsibility from that of creating the software.
- Can decide when and where to focus the V&V effort.

2. Financial Independence:
- Costed and funded separately.
- No risk of diverting funds/resources when the going gets tough.

3. Technical Independence:
- The code is looked at by an outside party. There is little or no bias.
- The tools and techniques used can be different.

- Prototyping:
- Presentation Prototypes:

- Used for proof of concept and explaining design features.
- Exploratory Prototypes:

- Used to determine problems, elicit needs, clarify goals, and compare design
options.

- It is informal and unstructured.
- Breadboards or Experimental Prototypes:

- Used to explore technical feasibility or to test the suitability of a technology.
- Typically there is no user/customer involvement.

- Evolutionary/Operational Prototypes:
- Development is seen as a continuous process of adapting the system.

- Usability Testing:
- Real users try out the system or prototype and write down what problem(s) they

observed. 3-5 users give the best return on investment.
- Model Analysis:
- Verification:

- “Is the model well-formed?”
- Are the parts of the model consistent with one another?

- Validation:
- ʻWhat ifʼ questions:

- Reasoning about the consequences of particular requirements.
- Reasoning about the effect of possible changes.
- Asking if the system will ever do the following tasks.

- Formal challenges:
- If the model is correct then the following property should hold.

- Animation of the model on small examples
- State exploration:

- Using model checking to find traces that satisfy some property.

CSCD01 Week 8 Notes
6

- UML Consistency Check:
- Use Case Diagrams:

- Does each use case have a user?
- Is each use case documented?

- Class Diagrams:
- Does the class diagram capture all the classes mentioned?
- Does every class have methods to set and get its attributes?

- Sequence Diagrams:
- Is each class in the sequence diagram?
- Can each message be sent?

- Is there an association connecting sender and receiver classes on the
sequence diagram?

- Is there a method call in the sending class for each message sent?
- Is there a method call in the receiving class for each message received?

- Model Checkers:
- Automatically check properties (expressed in Temporal Logic):

- means that p is true now and always (in the future).

- means that p is true eventually (in the future).

- means that whenever p occurs, itʼs always (eventually)
followed by a q.

- The model may be:
- Of the program itself (each statement is a ̒stateʼ).
- An abstraction of the program.
- A model of the specification.
- A model of the requirements.

- A model checker searches all paths in the state space with lots of techniques for
reducing the size of the search.

- Model checking does not guarantee correctness.
It only tells you about the properties that you ask about and may not be able to search
the entire state space.
However, it is good at finding many safety, liveness and concurrency problems

- Inspections:
- Management Reviews:

- Used to provide confidence that the design is sound.
- The audience are the management and sponsors (customers).
- Examples include preliminary design reviews and critical design reviews.

- Walkthroughs/Scientific Peer Reviews:
- Used by development teams to improve the quality of the product.
- The focus is on understanding design choices and finding defects.

- Fagan Inspections:
- A process management tool. (Always formal)
- Used to improve the quality of the development process.
- Collect defect data to analyze the quality of the process.
- Written output is important.
- Major role in training new staff and transferring expertise.

CSCD01 Week 8 Notes
7

- Inspections are very effective. Code inspections are better than testing for finding
defects. For models and specifications, inspections ensure that the domain experts
carefully reviewed them.

- Key ideas of inspections:
- Preparation: Reviewers individually inspect the code/diagram first.
- Collection meeting: Reviewers meet to merge their defect lists. They note each

defect, but donʼt spend time trying to fix it. The meeting plays an important role
as reviewers learn from one another when they compare their lists and additional
defects can be uncovered. Defect profiles from each inspection are important for
process improvement.

- How to structure the inspection:
- Checklist:

- Uses a checklist of questions/issues.
- The review is structured by the issues on the list.

- Walkthrough:
- One person presents the product step-by-step.
- The review is structured by the product.

- Round Robin:
- Each reviewer gets to raise an issue. (Goes in a circle)
- The review is structured by the review team.

- Speed Review:
- Each reviewer gets 3 minutes to review a chunk and then passes it to the

next reviewer.
- Good for assessing comprehensibility.

- Benefits of inspection:
- For applications programming:

- More effective than testing.
- Most reviewed programs run correctly the first time.

- Data from large projects:
- Error reduction by a factor of 5 (10 in some reported cases).
- Improvement in productivity by 14% to 25%.
- Percentage of errors found by inspection: 58% to 82%.
- Cost reduction of 50%-80% for V&V even including cost of inspection.

- Effects on staff competence:
- Increased morale, reduced turnover.
- Better estimation and scheduling (more knowledge about defect profiles).
- Better management recognition of staff ability.

CSCD01 Week 9 Notes
1

Introduction to Testing:
- Defects vs. Failures:
- Many causes of defects in software include:

- Missing requirement
- Wrong specification
- Requirements that were infeasible
- Faulty system design
- Wrong algorithms
- Faulty implementation

- Defects may lead to failures but the failure may show up somewhere else. Tracking the
failure back to a defect can be hard.

- Examples of program defects are:
- Syntax Faults: Incorrect use of programming constructs.
- Algorithmic Faults:

- Branching too soon or too late.
- Testing for the wrong condition.
- Failure to initialize correctly.
- Failure to test for exceptions. E.g. divide by 0
- Type mismatch

- Precision Faults:
- Mixed precision.
- Faulty/incorrect floating point conversion.

- Documentation Faults: Design docs or user manual is wrong.
- Stress Faults:

- Overflowing buffers.
- Lack of bounds checking.

- Timing Faults:
- Processes fail to synchronize.
- Events happen in the wrong order (Race Condition).

- Throughput Faults: Performance is lower than required.
- Recovery Faults: Incorrect recovery after another failure.
- Hardware Faults: Hardware doesnʼt perform as expected.

- Effectiveness of defect detection strategies:
- Defect Detection Effectiveness

CSCD01 Week 9 Notes
2

- XP Practices

- Use a combination of techniques because:
- Different techniques will find different defects.
- Different people will find different defects.
- Testing alone is only 60-80% effective.
- The best organisations achieve 95% defect-removal.
- Inspection, modeling, prototyping, and system tests are all important.

- Costs vary (This is from an IBM study):
- On average, 3.5 hours are spent on each defect for inspection.
- On average, 15-25 hours are spent on each defect for testing.

- Costs of fixing defects also vary:
- It is 100 times more expensive to remove a defect after implementation than in

design.
- 1-step methods (inspection) are cheaper than 2-step methods (test+debug).

- Cost of Rework:
- The industry average is 10-50 lines of delivered code per day per person.
- Debugging + retesting is 50% of the effort in traditional software engineering.

- Removing defects early saves money. Testing is easier if the defects are removed first
and high quality software will be delivered sooner at a lower cost.

- How not to improve quality: “Trying to improve quality by doing more testing is like trying
to diet by weighing yourself more often.”

- Basics of Testing:
- Benefits of testing:

- Find important defects to get them fixed.
- Assess the quality of the product.
- Help managers make release decisions.

CSCD01 Week 9 Notes
3

- Block premature product releases.
- Help predict and control product support costs.
- Check interoperability with other products.
- Find safe scenarios for use of the product.
- Assess conformance to specifications.
- Certify that the product meets a particular standard.
- Ensure that the testing process meets accountability standards.
- Minimize the risk of safety-related lawsuits.
- Measure reliability.

- Testing is more effective if you removed the bugs first.
- The goal of testing is unachievable. We cannot ever prove absence of errors.

Furthermore, finding no errors probably means your tests are ineffective.
- The goal of testing is also counter-intuitive. It is the only goal in software engineering

whose aim is to find errors/break the software. All other development activities aim to
avoid errors/breaking the software.

- Testing does not improve software quality. Test results measure the quality of the
existing code, but doesn’t improve it. Test-debug cycles are the least effective way to
improve quality of code.

- Testing requires you to assume your code is buggy. If you assume otherwise, you
probably wonʼt find them.

- Testing must be done appropriately based on the context and the
requirements/specification.

- Good tests have:
- Power: When a problem exists, the test will find it.
- Validity: The problems found are genuine problems.
- Value: Each test reveals things the clients will want to know.
- Credibility: Each test is a likely operational scenario.
- Non-redundancy: Each test provides new information.
- Repeatability: Each test is easy and inexpensive to re-run.
- Maintainability: Tests can be revised as the

requirements/specifications/products are revised.
- Coverage: The test cases exercise the product in a way not already tested for.

This is similar to non-redundancy.
- Ease of evaluation: The test results are easy to interpret.
- Diagnostic power: The tests help pinpoint the cause of problems.
- Accountability: You can explain, justify and prove you ran the test cases.
- Low cost: The time and effort to develop and execute the test cases are low.
- Low opportunity cost: Creating and running a test is a better use of your time

than other things you could be doing.
- Types of testing:

- Unit test: Testing an individual software component or module.
I.e. Each unit is tested separately to check it meets its specification.

- Integration test: Testing performed to expose defects in the interfaces and in the
interactions between integrated components or systems.
I.e. Units are tested together to check they work together.
Integration testing is hard because it is much harder to identify equivalence
classes, problems of scale may occur, and it tends to reveal specification errors
rather than integration errors.

- Function test: Testing that validates the software system against the functional
requirements/specifications.

CSCD01 Week 9 Notes
4

- Performance test: Testing the speed, responsiveness and stability of a
computer, network, software program or device under a workload.

- Acceptance test: An acceptance test verifies whether the end to end flow of the
system is as per the business requirements and if it is as per the needs of the
end-user. The client accepts the software only when all the features and
functionalities work as expected. It is the last phase of the testing, after which the
software goes into production. It is also called User Acceptance Testing (UAT).

- Installation test: Testing to check if the software has been correctly installed
with all the inherent features and that the product is working as per expectations.

I.e.

- Systematic testing depends on partitioning. We need to partition the set of possible
behaviours of the system and choose representative samples from each partition and
make sure we covered all partitions. Identifying suitable partitions is what testing is all
about. We can use different test strategies and methods to do so.

- Coverage 1: Structural

A naïve testing strategy is to pick random values for x and y and test ʻequalʼ on them.
However, we might never test the first branch of the ʻifʼ statement, so we need enough
test cases to cover every branch in the code.

CSCD01 Week 9 Notes
5

- Coverage 2: Functional

A naïve testing strategy is to generate lots of lists and test ‘maximum’ on them. However,
we havenʼt tested off-nominal cases such as empty lists, non-integers, negative integers,
etc, so we need enough test cases to cover every kind of input the program might have
to handle.

- Coverage 3: Behavioural

A naïve testing strategy is to push and pop things off the stack and check it all works.
However, we might miss full and empty stack exceptions, so we need enough tests to
exercise every event that can occur in each state that the program can be in.

- Other types of tests:
- Facility testing: Does the system provide all the functions required?
- Volume testing: Can the system cope with large data volumes?
- Stress testing: Can the system cope with heavy loads?
- Endurance testing: Will the system continue to work for long periods?
- Usability testing: Can the users use the system easily?
- Security testing: Can the system withstand attacks?
- Performance testing: How good is the response time?
- Storage testing: Are there any unexpected data storage issues?
- Configuration testing: Does the system work on all target hardware?
- Installation testing: Can we install the system successfully?
- Reliability testing: How reliable is the system over time?
- Recovery testing: How well does the system recover from failure?
- Serviceability testing: How maintainable is the system?
- Documentation testing: Is the documentation accurate, usable, etc.
- Operations testing: Are the operatorsʼ instructions right?
- Regression testing: Repeat all the testing every time we modify the system.

CSCD01 Week 9 Notes
6

Testing Strategies:
- Good Practices:
- Write the test cases first. This forces you to think carefully about the requirements first

and exposes requirements problems early.
- Structural Coverage Strategies (White box testing):
- White box testing is a software testing method in which the internal

structure/design/implementation of the item being tested is known to the tester.
- Types of white box testing include:

- Structured Basis Testing:
- Structured basis testing gives you the minimum number of test cases you

need to exercise every path.
- Start with 1 test case for the straight path. Add 1 test case for each of

these keywords: if, while, repeat, for, and, or add 1 test case for each
branch of a case statement.

- E.g.

We will need 4 test cases.
- Statement Coverage:

- Statement coverage is a white box testing technique, which involves
executing all the statements in the source code at least once.

- Branch Coverage:
- Branch coverage is a white box testing method in which every outcome

from a code module is tested. The purpose of branch coverage is to
ensure that each decision condition from every branch is executed at
least once.

- E.g.

CSCD01 Week 9 Notes
7

- Condition/Decision Coverage:
- Condition coverage is a testing method used to test and evaluate the

variables or sub-expressions in the conditional statement. The goal of
condition coverage is to check individual outcomes for each logical
condition. In this coverage, expressions with logical operands are only
considered.

- Condition coverage does not give a guarantee about full decision
coverage.

- E.g.

- E.g.
Suppose we have the code below.
if ((A || B) && C)
{
<< Few Statements >>

}
else
{

<< Few Statements >>
}

The 3 following tests would be sufficient for 100% condition coverage
testing.
A = true | B = not eval | C = false
A = false | B = true | C = true
A = false | B = false | C = not eval

- Modified Condition/Decision (MC/DC) Coverage:
- The modified condition/decision coverage (MC/DC) coverage is like

condition coverage, but every condition in a decision must be tested
independently to reach full coverage. This means that each condition
must be executed twice, with the results true and false, but with no
difference in the truth values of all other conditions in the decision. In
addition, it needs to be shown that each condition independently affects
the decision.

- The Modified Condition/Decision Coverage enhances the
condition/decision coverage criteria by requiring that each condition be
shown to independently affect the outcome of the decision. This kind of
testing is performed on mission critical application which might lead to
death, injury or monetary loss.

CSCD01 Week 9 Notes
8

- E.g.

- Advantages:
- Linear growth in the number of conditions.
- Ensures coverage of the object code.
- Discovers dead code (operands that have no effect).

- It is mandated by the US Federal Aviation Administration. In avionics,
complex boolean expressions are common, and MC/DC coverage has
been shown to uncover important errors not detected by other test
approaches.

- Itʼs expensive. The total cost of aircraft development for Boeing 777 is
$5.5 billion while the cost of testing to MC/DC criteria is approximately
$1.5 billion.

- Data Flow Coverage:
- Things that can happen to data:

- Defined - Data is initialized but not yet used.
- Used - Data is used in a computation.
- Killed - Space is released.
- Entered - Working copy created on entry to a method.
- Exited - Working copy removed on exit from a method.

- Normal life of a variable: Defined once, used a number of times, killed.
- Potential Defects:

- D-D: A variable is defined twice.
- D-Ex, D-K: A variable is defined but not used.
- En-K: Destroying a local variable that wasnʼt defined.
- En-U: Using a local variable before itʼs initialized.
- K-K: Unnecessary killing a variable. This can hang the machine.
- K-U: Using data after it has been destroyed.
- U-D: Redefining a variable after it has been used.

- Data flow testing helps us pinpoint any of the following issues:
- A variable that is declared but never used within the program.
- A variable that is used but never declared.
- A variable that is defined multiple times before it is used.
- Deallocating a variable before it is used.

- To get the minimal set of tests to cover every D-U path, we need 1 test
for each path from each definition to each use of the variable.

CSCD01 Week 9 Notes
9

- E.g.

- Boundary Checking:
- Every boundary needs 3 tests.
- E.g. Suppose we have this line:

if (x < 3)
We need 3 test cases:
One to test when x < 3.
One to test when x == 3.
One to test when x > 3.

- Function Coverage Strategies (Black box testing):
- Black box testing is a software testing method in which the internal

structure/design/implementation of the item being tested is not known to the tester.
- Generating Tests from Use Cases:

1. Test the Basic Flow.
2. Test the Alternate Flows.
3. Test the Postconditions.
4. Break the Preconditions.
5. Identify options for each input choice.

- Classes of Bad Data:
- Too little data or no data.
- Too much data.
- The wrong kind of data (invalid data).
- The wrong size of data.
- Uninitialized data.

- Classes of Good Data:
- Nominal cases - middle of the road, expected values.
- Minimum normal configuration.
- Maximum normal configuration.
- Compatibility with old data.

- Classes of input variables:
- Values that trigger alternative flows:

E.g. Invalid credit card information.
- Trigger different error messages:

E.g. The text is too long for the field.
E.g. An email address with no “@”.

- Inputs that cause changes in the appearance of the UI:
E.g. A prompt for additional information.

- Inputs that cause different options in dropdown menus:
E.g. US/Canada triggers a menu of states/provinces.

CSCD01 Week 9 Notes
10

- Cases in a business rule:
E.g. No next day delivery after 6pm.

- Border conditions:
E.g. If the password must be min 6 characters long, test passwords of 5,6,7
characters.

- Check the default values:
E.g. When the cardholderʼs name is filled automatically.

- Override the default values:
E.g. When the user enters a different name.

- Enter data in different formats:
E.g. phone numbers: (416) 555 1234 vs 416-555-1234 vs 416 555 1234.

- Test country-specific assumptions:
E.g. date order: 3/15/12 vs 15/3/12.

- Limits of Use Cases as Test Cases:
- Use case tests are good for:

User acceptance testing.
“Business as usual” functional testing.
Manual black-box tests.
Recording automated scripts for common scenarios.

- Limitations of use case tests:
Likely to be incomplete.
Use cases donʼt describe enough detail of use.
Gaps and inconsistencies may occur between use cases.
Use cases might be out of date.
Use cases might be ambiguous.

- Defects you wonʼt discover:
System errors (e.g. memory leaks).
Things that corrupt persistent data.
Performance problems.
Software compatibility problems.
Hardware compatibility problems.

- Stress Testing:
- Stress testing is a type of software testing that verifies the stability and reliability of the

software application. The goal of stress testing is measuring software on its robustness
and error handling capabilities under extremely heavy load conditions and ensuring that
software doesn't crash under crunch situations. It even tests beyond normal operating
points and evaluates how software works under extreme conditions.

- QuickTests:
- QuickTests are tests that don’t cost much to design, are based on some

estimated idea for how the system could fail and don’t take much prior knowledge
in order to apply.

- Explore the input domain:
1. Inputs that force all the error messages to appear.
2. Inputs that force the software to establish default values.
3. Explore allowable character sets and data types.
4. Overflow the input buffers.
5. Find inputs that may interact, and test combinations of their values.
6. Repeat the same input numerous times.

CSCD01 Week 9 Notes
11

- Explore the outputs:
7. Force different outputs to be generated for each input.
8. Force invalid outputs to be generated.
9. Force properties of an output to change.
10. Force the screen to refresh.

- Explore stored data constraints:
11. Force a data structure to store too many or too few values.
12. Find ways to violate internal data constraints.

- Explore feature interactions:
13. Experiment with invalid operator/operand combinations.
14. Make a function call itself recursively.
15. Force computation results to be too big or too small.
16. Find features that share data.

- Vary file system conditions:
17. File system full to capacity.
18. Disk is busy or unavailable.
19. Disk is damaged.
20. Invalid file name.
21. Vary file permissions.
22. Vary or corrupt file contents.

- Interference Testing:
- Examples include:

- Generate interrupts
- Change the context
- Cancel a task
- Pause the task
- Swap out the task
- Compete for resources

- A radical alternative - Exploratory Testing:
- Exploratory testing is a style of software testing that emphasizes personal freedom and

responsibility of the tester to continually optimize the value of their work by treating
test-related learning, test design, and test execution as mutually supportive activities that
run in parallel throughout the project.

- Exploratory testing is a type of software testing where test cases are not created in
advance but testers check the system on the fly. They may note down ideas about what
to test before test execution. The focus of exploratory testing is more on testing as a
"thinking" activity.

- Exploratory testing is widely used in Agile models and is all about discovery,
investigation, and learning. It emphasizes personal freedom and responsibility of the
individual tester.

- Under scripted testing, you design test cases first and later proceed with test execution.
On the contrary, exploratory testing is a simultaneous process of test design and test
execution all done at the same time. It is unscripted.

CSCD01 Week 10 Notes
1

Automated Testing:
- Different types of tests:

- Where possible, automate your testing. By doing regression testing, tests can be
repeated whenever the code is modified. This takes the tedium out of extensive testing
and makes more extensive testing possible.

- In order to do automated testing, you’ll need:
- Test drivers which will automate the process of running a test set. It sets up the

environment, makes a series of calls to the Unit-Under-Test (UUT), saves the
results and checks if they were right and generates a summary for the developer.

- Test stubs which will simulate part of the program called by the UUT. It checks
whether the UUT set up the environment correctly, checks whether the UUT
passed sensible input parameters to the stub and passes back some return
values to the UUT.

- Automated Testing Strategy:

- Test Order

CSCD01 Week 10 Notes
2

- JUnit:
- JUnit is a unit testing framework for Java.
- Assertion methods in JUnit:

- Single-Outcome Assertions:
E.g. fail;

- Stated Outcome Assertions:
E.g. assertNotNull(anObjectReference);
E.g. assertTrue(booleanExpression);

- Expected Exception Assertions:
E.g. assert_raises(expectedError) {codeToExecute };

- Equality Assertions:
E.g. assertEqual(expected, actual);

- Fuzzy Equality Assertions:
E.g. assertEqual(expected, actual, tolerance);

- Principles of Automated Testing:
- Write the test cases first.
- Design for testability.
- Use the front door first. This means test using public interfaces and avoid

creating backdoor manipulations.
- Communicate intent. Treat tests as documentation and make it clear what each

test does.
- Donʼt modify the UUT. Avoid test doubles and test-specific subclasses unless

absolutely necessary.
- Keep tests independent.
- Isolate the UUT.
- Minimize rest overlap.
- Check one condition per test.
- Test different concerns separately.
- Minimize untestable code.
- Keep test logic out of production code.

- Challenges for automated testing:
- Synchronization - How do we know a window popped open that we can click in?
- Abstraction - How do we know itʼs the right window?
- Portability - What happens on a display with different resolution/size?

- Techniques for testing the presentation layer:
- Script the mouse and keyboard events:

- We can write a script that sends mouse and keyboard events.
(E.g. “send_xevents @400,100”)

- However, this is not good practice/design because the script is write-only
and fragile.

- Script at the application function level:
- E.g. Applescript: tell application “UMLet” to activate.
- This is robust against size and position changes but fragile against widget

renamings, and layout changes. Hence, this is still not good
practice/design.

- Write an API for your application:
- We can use these APIs for testing.
- E.g. Allow an automated test to create a window and interact with

widgets.

CSCD01 Week 10 Notes
3

- Circular Dependencies:
- If you have circular dependencies in your code, you should refactor your code to remove

them.
- E.g.

Here, we have a circular dependency.

Because we have a circular dependency, we need to refactor the code. Here is the new
code.

- Testing Object Oriented Code:
- Object oriented code can be hard to test. The best/most efficient way to test object

oriented code is to have a parent test class for the parent class and to extend the parent
test class for the subclasses.
E.g.

CSCD01 Week 10 Notes
4

E.g.
The test class for the parent class.
class FooTest {

@Test
public void testSomeMethodBar() {
...
}

@Test public void void someOtherMethodBaz(Baz baz) {
...
}

}

The test class for the subclass class. Notice that this test class inherits from FooTest.
class EnhancedFooTest extends FooTest {

@Test
public void testSomeMethodBar() {
...
}

}
- When to stop testing:

- Motorolaʼs Zero-failure testing model predicts how much more testing is
needed to establish a given reliability goal.

- Failures = ae-b(t) where “a” and “b” are constants and “t” is the testing time.
- The reliability estimation process gives the number of further failure free hours

of testing needed to establish the desired failure density.
Note: If a failure is detected during this time, you stop the clock and recalculate.
Note: This model ignores operational profiles.
Inputs needed:

- fd = target failure density (e.g. 0.03 failures per 1000 LOC)
- tf = total test failures observed so far
- th = total testing hours up to the last failure

Formula:

𝑙𝑛(𝑓𝑑/(0.5 + 𝑓𝑑)) * 𝑥ℎ
𝑙𝑛((0.5 + 𝑓𝑑)/(𝑡𝑓 + 𝑓𝑑))

- Fault Seeding:
- Fault seeding is a technique for evaluating the effectiveness of a testing process. One

or more faults are deliberately introduced into a code base, without informing the testers.
The discovery of seeded faults during testing can be used to calibrate the effectiveness
of the test process.

- The idea is that

and we can use this data to estimate test efficiency and to estimate the number of
remaining faults.

CSCD01 Week 10 Notes
5

Acceptance Testing:
- Introduction to Acceptance Testing:
- Acceptance testing is testing conducted to determine whether a system satisfies its

acceptance criteria.
- There are two categories of acceptance testing:

1. User Acceptance Testing (UAT): It is conducted by the customer to ensure that
the system satisfies the contractual acceptance criteria before being signed-off
as meeting user needs. This is the final test performed. The main purpose of this
testing is to validate the software against the business requirements. This
validation is carried out by the end-users who are familiar with the business
requirements.

2. Business Acceptance Testing (BAT): It is undertaken within the development
organization of the supplier to ensure that the system will eventually pass the
user acceptance testing. This is to assess whether the product meets the
business goals and purposes or not.

- The 3 main goals of accepting testing are:
1. Confirm that the system meets the agreed upon criteria.
2. Identify and resolve discrepancies, if there are any.
3. Determine the readiness of the system for cut-over to live operations.

- The acceptance criteria are defined on the basis of the following attributes:
1. Functional Correctness and Completeness
2. Accuracy
3. Data Integrity
4. Data Conversion
5. Backup and Recovery
6. Competitive Edge
7. Usability
8. Performance
9. Start-up Time
10. Stress
11. Reliability and Availability
12. Maintainability and Serviceability
13. Robustness
14. Timeliness
15. Confidentiality and Availability
16. Compliance
17. Installability and Upgradability
18. Scalability
19. Documentation

- Selection of Acceptance Criteria:
- The acceptance criteria discussed are usually too general, so the customer needs to

select a subset of the quality attributes.
- The quality attributes are then prioritized to the specific situation.
- Ultimately, the acceptance criteria must be related to the business goals of the

customer’s organization.

CSCD01 Week 10 Notes
6

- Example of an acceptance test plan

- Acceptance Test Execution:
- The acceptance test cases are divided into two subgroups:

- The first subgroup consists of basic test cases.
- The second subgroup consists of test cases that are more complex to execute.

- The acceptance tests are executed in two phases:
- In the first phase, the test cases from the basic test group are executed.
- If the test results are satisfactory then the second phase, in which the complex

test cases are executed, is taken up.
- In addition to the basic test cases, a subset of the system-level test cases are

executed by the acceptance test engineers to independently confirm the test
results.

- Acceptance test execution activity includes the following detailed actions:
- The developers train the customer on the usage of the system.
- The developers and the customer coordinate the fixing of any problem

discovered during acceptance testing.
- The developers and the customer resolve the issues arising out of any

acceptance criteria discrepancy.
- The acceptance test engineer may create an Acceptance Criteria Change (ACC)

document to communicate the deficiency in the acceptance criteria to the supplier.
- An ACC report is generally given to the supplier’s marketing department through the

on-site system test engineers.
- E.g. of an ACC document

CSCD01 Week 10 Notes
7

- Acceptance Test Report:
- The acceptance test activities are designed to reach at a conclusion:

- Accept the system as delivered.
- Accept the system after the requested modifications have been made.
- Do not accept the system.

- Usually some useful intermediate decisions are made before making the final decision.
- A decision is made about the continuation of acceptance testing if the results of the first

phase of acceptance testing is not promising. If the test results are unsatisfactory,
changes are made to the system before acceptance testing can proceed to the next
phase.

- During the execution of acceptance tests, the acceptance team prepares a test report on
a daily basis.
I.e. During the execution of acceptance tests, a daily acceptance test report is made.

- E.g. of a daily acceptance test report

- At the end of the first and the second phases of acceptance testing an acceptance test
report is generated.

- E.g. of a finalized acceptance test report

CSCD01 Week 10 Notes
8

- Acceptance Testing in Extreme Programming:
- In the XP framework, the user stories are used as the acceptance criteria.
- The user stories are written by the customer as things that the system needs to do for

them.
- Several acceptance tests are created to verify the user story has been correctly

implemented.
- The customer is responsible for verifying the correctness of the acceptance tests and

reviewing the test results.
- A story is incomplete until it passes its associated acceptance tests.
- Ideally, acceptance tests should be automated, either using the unit testing framework,

before coding.
- The acceptance tests take on the role of regression tests.

Static Analysis:
- Static analysis is a method of computer program debugging that is done by examining

the code without executing the program.
- This process provides an understanding of the code structure and can help ensure that

the code adheres to industry standards.
- Automated tools can assist programmers and developers in carrying out static analysis.

The software will scan all code in a project to check for vulnerabilities while validating the
code.

- Static analysis is generally good at finding coding issues such as:
- Programming errors
- Coding standard violations
- Undefined values
- Syntax violations
- Security vulnerabilities

- Once the code is written, a static code analyzer should be run to look over the code. It
will check against defined coding rules from standards or custom predefined rules. Once
the code is run through the static code analyzer, the analyzer will have identified whether
or not the code complies with the set rules. It is sometimes possible for the software to
flag false positives, so it is important for someone to go through and dismiss any. Once
false positives are waived, developers can begin to fix any apparent mistakes, generally
starting from the most critical ones. Once the code issues are resolved, the code can
move on to testing through execution.

- Example of static analysis tools include:
- FindBugs
- JLint
- JSHint

- Different tools find different bugs.
- Benefits of using static analysis include:

- It can evaluate all the code in an application, increasing code quality.
- Automated tools are less prone to human error and are faster.
- It will increase the likelihood of finding vulnerabilities in the code, increasing web

or application security.
- It can be done in an offline development environment.

- Drawbacks of using static analysis include:
- False positives can be detected.
- It will detect harmless bugs that may not be worth fixing.
- A tool might not indicate what the defect is if there is a defect in the code.
- Static analysis can't detect how a function will execute.

CSCD01 Week 10 Notes
9

Quality:
- Introduction to Quality:
- Quality is value to some person.
- Quality is fitness to purpose.
- Quality is exceeding the customerʼs expectations.
- Quality in Use: The user's view of the quality of a system.

I.e. Whatʼs the end-userʼs experience?
- External Quality Attributes: External quality determines the fulfillment of stakeholder

requirements. It is about the functionality of the system.
I.e. Does it pass all the tests?

- Internal Quality Attributes: Internal quality has to do with the way that the system has
been constructed.
I.e. Is it well-designed?

- Process Quality: Process quality focuses on the steps of manufacturing the product.
I.e. Is it assembled correctly?

- Quality Assurance (QA):
- Verification and validation (V&V) focuses on the quality of the product.
- QA focuses on the quality of the processes. It focuses on improving the software

development process and making it more efficient and more effective.
- It looks at:

- How well are the processes documented?
- How well do people follow these processes?
- Does the organisation measure key quality indicators?
- Does the organisation learn from its mistakes?

- Examples of QA standards and practices are:
- ISO9001
- TickIt
- Capability Maturity Model (CMM)
- Total Quality Management (TQM)

- A History of Managing Quality for Industrial Engineering:
- Product Inspection (1920s): Examine intermediate and final products and discard

defective items.
- Process Control (1960s): Monitor defect rates to identify defective process elements &

control the process.
- Design Improvement (1980s): Engineering the process and the product to minimize the

potential for defects.
- Total Quality Management (TQM):
- Total quality management is the continual process of detecting and reducing or

eliminating errors in manufacturing, streamlining supply chain management, improving
the customer experience, and ensuring that employees are up to speed with training.

- Total quality management aims to hold all parties involved in the production process
accountable for the overall quality of the final product or service.

- TQM uses statistical methods to analyze industrial production processes.
- The basic principle of TQM is counter-intuitive: In the event of a defect, donʼt adjust the

controller or youʼll make things worse. Instead, analyze the process and improve it.
- It was developed by William Deming.﻿
- While TQM shares much in common with the Six Sigma improvement process, it is not

the same as Six Sigma. TQM focuses on ensuring that internal guidelines and process
standards reduce errors, while Six Sigma looks to reduce defects.

CSCD01 Week 10 Notes
10

- Six Sigma:
- Six Sigma is a quality-control methodology developed in 1986 by Motorola.
- The method uses a data-driven review to limit mistakes or defects in a corporate or

business process. The key ideas are to use statistics to measure defects and to design
the process to reduce defects.

- Six Sigma emphasizes cycle-time improvement while at the same time reducing
manufacturing defects to a level of no more than 3.4 occurrences per million units or
events.

- Six Sigma points to the fact that, mathematically, it would take a six-standard-deviation
event from the mean for an error to happen.

- Quality Management for Software:
- All defects are design errors, not manufacturing errors.
- Process improvement principles still apply to the design process.
- Defect removal:
- There are two ways to remove defects:

1. Fix the defects in each product. (I.e patch the product)
2. Fix the process that leads to defects. (I.e. prevent defects from occurring)

- The latter is cost effective as it affects all subsequent projects.
- Defect prevention:
- Programmers must evaluate their own errors.
- Feedback is essential for defect prevention.
- There is no single cure-all for defects. They must be eliminated one by one.
- Process improvement must be an integral part of the process.
- Process improvement takes time to learn.
- Six Sigma Might not be Suitable for Software:
- Software processes depend on human behaviour, meaning they are not predictable.
- Software characteristics are not ordinal:

- We cannot measure the degree of conformance for software.
- The mapping between software faults and failures is many-to-many.
- Not all software anomalies are faults.
- Not all failures result from the software itself.
- We cannot accurately measure the number of faults in software.

- Typical defect rates:
- NASA Space shuttle: 0.1 failures/KLOC
- Best military systems: 5 faults/KLOC
- Worst military systems: 55 faults/KLOC
- Six Sigma would demand 0.0034 faults/KLOC

- Process Modeling & Improvement:
- Process Description: Understand and describe the current practices.
- Process Definition: Prescribe a process that reflects the organizationʼs goals.
- Process Customization: Adapt the prescribed process model for each individual

project.
- Process Enactment: Carry out the process. This means developing the software and

collecting process data.
- Process improvement: Use lessons learned from each project to improve the

prescriptive model. I.e. Analyze defects to eliminate causes.
- Capability Maturity Model (CMM):
- The Capability Maturity Model is a process improvement approach developed specially

for software process improvement.
- CMM has 5 levels. An organization is certified at CMM level 1 to 5 based on the maturity

of their quality assurance mechanisms.

CSCD01 Week 10 Notes
11

- CMM Levels

Level Characteristic Key Challenges

1 (Initial) In this stage the quality environment is
unstable. Simply, no processes have been
followed or documented.
Ad hoc/Chaotic.
No cost estimation, planning, management.

Project Management
Project Planning
Configuration Management
Change Control
Software Quality Assurance

2 (Repeatable) Some processes are followed which are
repeatable. This level ensures processes are
followed at the project level.
Processes are dependent on individuals.

Establish a process group
Identify a process architecture
Introduce SE methods and
tools

3 (Defined) A set of processes are defined and
documented at the organizational level.
Those defined processes are subject to some
degree of improvement.
A process is defined and institutionalized.

Process measurement
Process analysis Quantitative
Quality Plans

4 (Managed) This level uses process metrics and
effectively controls the processes that are
followed.
The process is measured.

Automatic collection of
process data
Use process data to analyze
and modify the process

5 (Optimizing) This level focuses on the continuous
improvements of the processes through
learning & innovation.
Improvement and feedback are fed back into
the process.

Identify process indicators
Empower individuals

- Arguments against QA:
1. The costs may outweigh the benefits:

- Costs: Increased documentation, more meetings, etc.
- Benefits: Improved quality of the process outputs.

2. Reduced agility:
- Documenting the processes makes them less flexible.

3. Reduced thinking:
- Following the defined process gets in the way of thinking about the best way to

do the job.
4. Barrier to Innovation:

- New ideas have to be incorporated into the Quality Plan and get signed off.
5. Demotivation:

- Extra bureaucracy makes people frustrated.
- ISO 9000:
- The ISO 9000 family of quality management systems is a set of standards that helps

organizations ensure they meet customer and other stakeholder needs within statutory
and regulatory requirements related to a product or service.

- ISO 9000 deals with the fundamentals of QMS, including the seven quality management
principles that underlie the family of standards. It deals with the management systems

CSCD01 Week 10 Notes
12

used by organizations to ensure quality in design, production, delivery, and support
products.

- ISO 9001 deals with the requirements that organizations wishing to meet the standard
must fulfil. It includes several important changes for quality management systems,
including modifications in terminology, the introduction of new context-based clauses,
emphasis on management’s role in quality, and a focus on risk-based approach.

- Ishikawa (Fishbone) Diagram:
- The fishbone diagram identifies many possible causes for an effect or problem.
- It can be used to structure a brainstorming session.
- It immediately sorts ideas into useful categories.
- We should use a fishbone diagram:

- When identifying possible causes for a problem.
- When a team’s thinking tends to fall into ruts.

- E.g.

- Pareto Chart:
- A Pareto chart is a bar graph and a line graph. The lengths of the bars represent

frequency or cost (time or money), and are arranged with longest bars on the left and the
shortest to the right. In this way the chart visually depicts which situations are more
significant. The line represents the cumulative percentage of defects.

- The left vertical axis is the frequency of occurrence. The right vertical axis is the
cumulative percentage of the total number of occurrences.

- Pareto charts are useful to find the defects to prioritize in order to observe the greatest
overall improvement.

- The Pareto chart is one of the seven basic tools of quality control.

CSCD01 Week 10 Notes
13

- E.g.

- How to assess software quality:
- Reliability:
- The designer must be able to predict how the system will behave:

- Completeness - Does it do everything it is supposed to do?
- Consistency - Does it always behave as expected?
- Robustness - Does it behave well under abnormal conditions?

- Efficiency:
- How efficient is the use of resources such as processor time, memory, network

bandwidth?
- This is less important than reliability in most cases.

- Maintainability:
- How easy will it be to modify in the future?

- Usability:
- How easy is it to use?

CSCD01 Week 10 Notes
14

- Measuring Quality:

- Boehmʼs Quality Map:

- McCallʼs Quality Map:

CSCD01 Week 10 Notes
15

- ISO/IEC 9126:

- Conflicts between Quality factors:

We can summarize the above picture into the below one:

UML Diagram Notes
1

Table of Contents:
UML: 3

Introduction to UML: 3
History of UML: 3
UML diagrams can help engineering teams: 3
Uses of UML: 3
Things to Model: 4

Structure of the code: 4
Behaviour of the code: 4
Function of the code:

4
Class Diagram: 5

Introduction to Class Diagrams: 5
Notation: 5

Naming Convention: 5
Visibility: 6
Inheritance/Generalization and Realization Relationships: 6
Association: 6
Multiplicity: 7
Aggregation: 7
Composition: 7
Dependency: 8
Examples of UML class diagrams: 8
How to draw class diagrams: 9

Summary: 9
Naming Convention: 9
Visibility: 9
Multiplicity: 9
Others: 10

Object Diagram: 11
Naming Convention: 11
Purpose:

11
UML Packages: 12

Introduction: 12
A package in the UML helps: 12
Benefits of UML package diagrams: 12

Terminology: 12
Notation: 13
Criteria for Decomposing a System into Packages: 14
Other Guidelines for Packages: 14
Summary:

15
Component Diagrams: 16

Introduction: 16
Notation: 16
Summary:

Interaction Diagrams: 19

UML Diagram Notes
2

Sequence Diagrams: 21
Introduction: 21
Benefits of a sequence diagram: 22
Drawbacks of a sequence diagram: 22
When to use sequence diagrams: 22
Modelling Control Flow By Time: 22
Style Guide for Sequence Diagrams: 22
Summary:

23
Use Case Diagrams: 24

Introduction: 24
Relationships Between Use Cases: 25
Actor Classes: 25
Describing Use Cases: 26

Typical contents: 26
Documentation style: 26

Finding Use Cases: 26
For each actor, ask the following questions: 26
Summary: 26

UML Diagram Notes
3

UML:
- Introduction to UML:
- Unified Modeling Language (UML) allows us to express the design of a program

before writing any code.
- It is language-independent.
- It is an extremely expressive language.
- UML is a graphical language for visualizing, specifying, constructing, and documenting

information about software-intensive systems.
- UML can be used to develop diagrams and provide programmers with ready-to-use,

expressive modeling examples. Some UML tools can generate program language code
from UML. UML can be used for modeling a system independent of a platform language.

- UML is a picture of an object oriented system. Programming languages are not abstract
enough for object oriented design. UML is an open standard and lots of companies use
it.

- Legal UML is both a descriptive language and a prescriptive language. It is a descriptive
language because it has a rigid formal syntax, like programming languages, and it is a
prescriptive language because it is shaped by usage and convention.

- It’s okay to omit things from UML diagrams if they aren’t needed by the
team/supervisor/instructor.

- History of UML:
- In an effort to promote object oriented designs, three leading object oriented

programming researchers joined forces to combine their languages. They were:
1. Grady Booch (BOOCH)
2. Jim Rumbaugh (OML: object modeling technique)
3. Ivar Jacobsen (OOSE: object oriented software eng)

- They came up with an industry standard in the mid 1990’s.
- UML was originally intended as a design notation and had no modelling associated with

it.
- UML diagrams can help engineering teams:
- Bring new team members or developers switching teams up to speed quickly.
- Navigate source code.
- Plan out new features before any programming takes place.
- Communicate with technical and non-technical audiences more easily.
- Uses of UML:
1. It can be used as a sketch to communicate aspects of the system.
- Forward design: Doing UML before coding.
- Backward design: Doing UML after coding as documentation.
2. It can be used as a blueprint to show a complete design that needs to be implemented.

This is sometimes done with CASE (Computer-Aided Software Engineering) tools. One
of these tools is visual paradigm.

3. It can be used as a programming language.
- Some UML tools can generate program language code from UML.
4. As a sketch:
- Can be used to sketch a high level view of the system.
- Forward engineering: Describes the concepts we need to implement.
- Reverse engineering: Explains how parts of the code work.
5. As a blueprint:
- Should be complete and describes the system in detail.
- Forward engineering: Model as a detailed specification for the programmer.
- Reverse engineering: Model as a code browser.

UML Diagram Notes
4

- Tools provide both forward and reverse engineering to move back and forth between the
program and the code.

6. As a programming language:
- UML diagrams can be automatically compiled into working code using sophisticated

tools, such as Visual Paradigm.
- Things to Model:
- Structure of the code:
- Code dependencies.
- Components and couplings.
- Behaviour of the code:
- Execution traces.
- State machine models of complex objects.
- Function of the code:
- What function does it provide to the user?

UML Diagram Notes
5

Class Diagram:
- Introduction to Class Diagrams:
- A class describes a group of objects with:
- Similar attributes
- Common operations
- Common relationships with other objects
- Common meaning
- A class diagram describes the structure of an object oriented system by showing the

classes in that system and the relationships between the classes. A class diagram also
shows the constraints, and attributes of classes. It displays the system's classes,
attributes, and methods. It is helpful in recognizing the relationship between different
objects as well as classes.
I.e.
A UML class diagram is a picture of:

- The classes in an object oriented system.
- Their fields and methods.
- Connections between the classes that interact or inherit from each other.

- Some things that are not represented in a UML class diagram are:
- Details of how the classes interact with each other.
- Algorithmic details, like how a particular behavior is implemented.

- Note: Coupling between classes must be kept low, while cohesion within a class must
be kept high. Furthermore, we should respect the SOLID principles.

- UML class diagrams cans show:
1. Division of responsibility
2. Subclassing/Inheritance
3. Visibility of objects and methods
4. Aggregation/Composition
5. Interfaces
6. Dependencies

- Notation:
- Naming Convention:
1. Class name
- Use <<interface>> on top of interface names.
- To show that a class is abstract, either italicize the class name or put <<abstract>> on

top of the abstract class name.
2. Data members/Attributes
- The data members section of a class lists each of the class's data members on a

separate line.
- Each line uses this format: attributeName : type

E.g. name : String
- We must underline static attributes.
3. Methods/Operations
- The methods of a class are displayed in a list format, with each method on its own line.
- Each line uses this format:

methodName(param1: type1, param2: type2, ...) : returnType
E.g. distance(p1: Point, p2: Point) : Double

- We may omit setters and getters. However, don’t omit any methods from an interface.
- Furthermore, do not include inherited methods.
- We must underline static methods.

UML Diagram Notes
6

- Visibility:
- − means that it is private.
- + means that it is public.
- # means that it is protected.
- ∼ means that it is a package.
- / means that it is a derived attribute. A derived attribute is an attribute whose value is

produced or computed from other information.
- Note: Everything except / is common for both methods and attributes.
- E.g.

- Inheritance/Generalization and Realization Relationships:
- Generalization/inheritance is when a class extends another class while realization is

when a class implements an interface.
- Generalization represents a “IS-A” relationship.
- Hierarchies are drawn top down with arrows pointing upward to the parent class.

I.e. The parent class is above the child class and the arrow goes from the child class to
the parent class.

- For a class, draw a solid line with a black arrow pointing to the parent class.
- For an abstract class, draw a solid line with a white arrow pointing to the parent abstract

class.
- For an interface, draw a dashed line with a white arrow pointing to the interface.
- E.g.

- Association:
- An association represents a relationship between two classes. It also defines the

multiplicity between objects.
- Association can be represented by a line between the classes with an arrow indicating

the navigation direction.
Note: Sometimes, association can be represented just by a line between the classes.
This means that information can flow in both directions.

UML Diagram Notes
7

- We need the following items to represent association between 2 classes:
1. The multiplicity
2. The name of the relationship
3. The direction of the relationship

- Aggregation, composition and dependency are all types of association.
- Multiplicity:
- * means 0 or more.
- 1 means 1 exactly.
- 2..4 means 2 to 4, inclusive.
- 3..* means 3 or more.
- There are other relationships such as 1-to-1, 1-to-many, many-to-1 and many-to-many.
- Aggregation:
- A special type of association.
- Aggregation implies a relationship where the child class can exist independently of the

parent class. This means that if you remove/delete the parent class, the child class still
exists.
I.e. Aggregation represents a “HAS-A” or “PART-OF” relationship.
E.g. Say we have 2 classes, Teacher (the parent class) and Student (the child class). If
we delete the Teacher class, the Student class still exists.

- Aggregation is symbolized by an arrow with a clear white diamond arrowhead pointing to
the parent class.

- E.g.

- Aggregation is considered as a weak type of association.
- Composition:
- A special type of association. Composition is considered as a strong type of association.
- It is a stronger version of aggregation where if you delete the parent class, then all the

child classes are also deleted.
I.e. Composition represents a “ENTIRELY MADE OF” relationship.
E.g. Say we have 2 classes, House (the parent class) and Room (the child class). If we
delete the House class, the Room class is also deleted.

- Composition is symbolized by an arrow with a black diamond arrowhead pointing to the
parent class.

UML Diagram Notes
8

- E.g.

- Dependency:
- Is a special type of association.
- Dependency indicates a “uses” relationship between two classes. If a change in

structure or behaviour of one class affects another class, then there is a dependency
between those two classes.

- Dependency is represented by a dotted arrow where the arrowhead points to the
independent element.

- E.g.

- Examples of UML class diagrams:

UML Diagram Notes
9

- How to draw class diagrams:
1. Identify the objects in the problem and create classes for each of them
2. Add attributes
3. Add operations
4. Connect classes with relationships
5. Specify the multiplicities for association connections.

- Summary:
- Naming Convention:
1. Class name
- Use <<interface>> on top of interface names.
- To show that a class is abstract, either italicize the class name or put <<abstract>> on

top of the abstract class name.
2. Data members/Attributes
- The data members section of a class lists each of the class's data members on a

separate line.
- Each line uses this format: attributeName : type

E.g. name : String
- We must underline static attributes.
3. Methods/Operations
- The methods of a class are displayed in a list format, with each method on its own line.
- Each line uses this format:

methodName(param1: type1, param2: type2, ...) : returnType
E.g. distance(p1: Point, p2: Point) : Double

- We may omit setters and getters. However, don’t omit any methods from an interface.
- Furthermore, do not include inherited methods.
- We must underline static methods.
- Visibility:
- − means that it is private.
- + means that it is public.
- # means that it is protected.
- ∼ means that it is a package.
- / means that it is a derived attribute. A derived attribute is an attribute whose value is

produced or computed from other information.
- Note: Everything except / is common for both methods and attributes.
- Multiplicity:
- * means 0 or more.
- 1 means 1 exactly.
- 2..4 means 2 to 4, inclusive.
- 3..* means 3 or more.
- There are other relationships such as 1-to-1, 1-to-many, many-to-1 and many-to-many.

UML Diagram Notes
10

- Others:

Item Explanation Depiction

Generalization/inheritance

Realization

When a class extends another
class.

Generalization represents a
“IS-A” relationship.

When a class implements an
interface

For a class, draw a solid
line with a black arrow
pointing to the parent
class.

For an abstract class, draw
a solid line with a white
arrow pointing to the
parent abstract class.

For an interface, draw a
dashed line with a white
arrow pointing to the
interface.

Association Represents a relationship
between two classes.

It also defines the multiplicity
between objects.

A line between the classes
with an arrow indicating the
navigation direction.

Note: Sometimes,
association can be
represented just by a line
between the classes. This
means that information can
flow in both directions.

Aggregation A special type of association.
It is a weak type of
association.

Aggregation implies a
relationship where the child
class can exist independently
of the parent class. This
means that if you
remove/delete the parent
class, the child class still
exists.

I.e. Aggregation represents a
“HAS-A” or “PART-OF”
relationship.

An arrow with a clear white
diamond arrowhead
pointing to the parent
class.

UML Diagram Notes
11

Composition A special type of association.
Composition is considered as
a strong type of association.

It is a stronger version of
aggregation where if you
delete the parent class, then
all the child classes are also
deleted.

I.e. Composition represents a
“ENTIRELY MADE OF”
relationship.

An arrow with a black
diamond arrowhead pointing
to the parent class.

Dependency: Is a special type of
association.

Dependency indicates a
“uses” relationship between
two classes. If a change in
structure or behaviour of one
class affects another class,
then there is a dependency
between those two classes.

A dotted arrow where the
arrowhead points to the
independent element.

Object Diagram:
- Object diagrams look very similar to class diagrams.
- Naming Convention:

Object name: Type
Attribute: Value (Sometimes, it’s Attribute = Value)
E.g.

- Note: 2 different objects may have identical attribute values.
- Purpose:
- It is used to describe the static aspect of a system.
- It is used to represent an instance of a class.
- It can be used to perform forward and reverse engineering on systems.
- It is used to understand the behavior of an object.
- It can be used to explore the relations of an object and can be used to analyze other

connecting objects.

UML Diagram Notes
12

UML Packages:
- Introduction:
- A package is a namespace used to group together elements that are semantically

related and might change together. It is a general purpose mechanism to organize
elements into groups to provide a better structure for a system model.

- UML package diagrams are structural diagrams used to show the organization and
arrangement of various model elements in the form of packages. A package is a
grouping of related UML elements, such as diagrams, documents, classes, or even other
packages. Each element is nested within the package, which is depicted as a file folder,
and then is arranged hierarchically within the diagram. Package diagrams are most
commonly used to provide a visual organization of the layered architecture within any
UML classifier, such as a software system.

- Package diagrams are UML structure diagrams which show packages and
dependencies between the packages.
Note: Structure diagrams do not utilize time related concepts and do not show the
details of dynamic behavior.

- If a package is removed from a model, so are all the elements owned by the package.
- A package could also be a member of other packages.
- A package in the UML helps:
- To group elements.
- To provide a namespace for the grouped elements.
- Provide a hierarchical organization of packages.
- Benefits of UML package diagrams:
- They provide a clear view of the hierarchical structure of the various UML elements

within a given system.
- These diagrams can simplify complex class diagrams into well-ordered visuals.
- They offer valuable high-level visibility into large-scale projects and systems.
- Package diagrams can be used to visually clarify a wide variety of projects and systems.
- These visuals can be easily updated as systems and projects evolve.
- Terminology:
- Package: A namespace used to group together logically related elements within a

system. Each element contained within the package should be a packageable element
and have a unique name.

- Packageable element: A named element, possibly owned directly by a package. These
can include events, components, use cases, and packages themselves. Packageable
elements can also be rendered as a rectangle within a package, labeled with the
appropriate name.

- Dependencies: A visual representation of how one element or set of elements depends
on or influences another. Dependencies are divided into two groups: access and import
dependencies.

- Access dependency: Indicates that one package requires assistance from the functions
of another package.
I.e. One package requires help from functions of another package. (Making an API call
for example)

- Import dependency: Indicates that functionality has been imported from one package to
another.
I.e. One package imports the functionality of another package. (Importing a package)

UML Diagram Notes
13

- Notation:
- A package is rendered as a rectangle with a small tab attached to the left side of the top

of the rectangle. If the members of the package are not shown inside the package
rectangle, then the name of the package should be placed inside.
E.g.

- The members/elements of the package may be shown within the boundaries of the
package. If the names of the members of the package are shown, then the name of the
package should be placed on the tab.
E.g.

Here, Package org.hibernate contains SessionFactory and Session.
- More examples:

- To show a dependency between 2 packages, you draw a dotted arrow,

, between the 2 packages such that the arrow is pointing
to the independent package.

UML Diagram Notes
14

- To show an access dependency, write <<Access>> on the dotted arrow.
E.g.

- To show an import dependency, write <<Import>> on the dotted arrow.
E.g.

- Criteria for Decomposing a System into Packages:
- Different owners - who is responsible for working on which diagrams?
- Different applications - each problem has its own obvious partitions.
- Clusters of classes with strong cohesion - E.g. course, course description, instructor,

student, etc.
- Or: Use an architectural pattern to help find a suitable decomposition such as the MVC

Framework.
- Other Guidelines for Packages:
- Gather model elements with strong cohesion in one package.
- Keep model elements with low coupling in different packages.
- Minimize relationships, especially associations, between model elements in different

packages.
- Namespace implication: An element imported into a package does not know how it is

used in the imported package.
- We want to avoid dependency cycles.

UML Diagram Notes
15

- Summary:
Item & Example Description Depiction

Package A namespace used to group
together logically related
elements within a system.

Each element contained within
the package should be a
packageable element and have
a unique name.

A rectangle with a small tab
attached to the left side of the
top of the rectangle.

If the members of the package
are not shown inside the
package rectangle, then the
name of the package should be
placed inside.

Packageable element A named element, possibly
owned directly by a package.

These can include events,
components, use cases, and
packages themselves.

Packageable elements can also
be rendered as a rectangle
within a package, labeled with
the appropriate name.

Dependency A visual representation of how
one element or set of elements
depends on or influences
another.
Dependencies are divided into
two groups: access and import
dependencies.

To show a dependency
between 2 packages, you draw
a dotted arrow, between the 2
packages such that the arrow is
pointing to the independent
package.

Access dependency Indicates that one package
requires assistance from the
functions of another package.

To show an access
dependency, write <<Access>>
on the dotted arrow.

Import dependency Indicates that functionality has
been imported from one
package to another.

To show an import dependency,
write <<Import>> on the dotted
arrow.

UML Diagram Notes
16

Component Diagrams:
- Introduction:
- Component diagrams are used in modeling the physical aspects of object-oriented

systems that are used for visualizing, specifying, and documenting component-based
systems and also for constructing executable systems through forward and reverse
engineering.

- A component diagram breaks down the actual system under development into various
high levels of functionality.

- Each component is responsible for one clear aim within the entire system and only
interacts with other essential elements on a need-to-know basis.

- Component diagrams can help your team:
- Imagine the system’s physical structure.
- Pay attention to the system’s components and how they relate.
- Emphasize the service behavior as it relates to the interface.

- A component diagram gives a bird’s-eye view of your software system. Understanding
the exact service behavior that each piece of your software provides will make you a
better developer. Component diagrams can describe software systems that are
implemented in any programming language or style.

- Notation:
- Component: A rectangle with the component’s name, stereotype text, and icon. A

component represents a modular part of a system that encapsulates its contents and
whose manifestation is replaceable within its environment.
E.g.

- Interface: There are 2 types of interfaces, provided interface and required interface.
Provided interface: A complete circle with a line connecting to a component. Provided
interfaces provide items to components.
Required Interface: A half circle with a line connecting to a component. Required
interfaces are used to provide required information to a provided interface.
E.g.

- Port: A square along the edge of the system or a component. A port is often used to
help expose required and provided interfaces of a component. Ports are used to hook up
other elements in a component diagram.
E.g.

UML Diagram Notes
17

- Association: An association specifies a relationship that can occur between two
instances. You represent an association using a straight line connecting 2 components.
E.g.

- Composition: Composition is a stronger form of aggregation that requires a part
instance to be included in at most one composite at a time. If a composite is deleted, all
of its parts are normally deleted with it. Composition is a type of association. You can
represent a composition using an arrow where the arrowhead is filled in and points to the
parent class.
E.g.

- Aggregation: Aggregation implies a relationship where the child class can exist
independently of the parent class. This means that if you remove/delete the parent class,
the child class still exists. It is a special type of association and a weak form of
association. You can represent an aggregation using an arrow where the arrowhead is
not filled in and points to the parent class.
E.g.

- Dependency: A dependency is a relationship that signifies that a single or a set of
model elements requires other model elements for their specification or implementation.
It is denoted as a dotted arrow with a circle at the tip of the arrow.
E.g.

UML Diagram Notes
18

- Summary:
Item & Example Description Depiction

Component A component represents a modular part
of a system that encapsulates its
contents and whose manifestation is
replaceable within its environment.

A rectangle with the
component’s name,
stereotype text, and
icon.

Provided interface

Required Interface

Provided interfaces provide items to
components.

Required interfaces are used to provide
required information to a provided
interface.

A complete circle with a
line connecting to a
component.

A half circle with a line
connecting to a
component.

Port A port is often used to help expose
required and provided interfaces of a
component. Ports are used to hook up
other elements in a component diagram.

A square along the
edge of the system or a
component.

Association An association specifies a relationship
that can occur between two instances.

A straight line
connecting 2
components.

Aggregation Aggregation implies a relationship where
the child class can exist independently
of the parent class.

It is a weak form of association.

An arrow where the
arrowhead is not filled in
and points to the parent
class.

Composition Composition is a stronger form of
aggregation that requires a part instance
to be included in at most one composite
at a time.

Composition is a type of association.

An arrow where the
arrowhead is filled in
and points to the parent
class.

Dependency A dependency is a relationship that
signifies that a single or a set of model
elements requires other model elements
for their specification or implementation.

It is denoted as a dotted
arrow with a circle at the
tip of the arrow.

UML Diagram Notes
19

Interaction Diagrams:
- Interaction diagrams describe how a group of objects collaborate in some behavior.

They commonly contain objects, links and messages.
- Objects communicate with each other through function/method calls called messages.
- An interaction is a set of messages exchanged among a set of objects in order to

accomplish a specific goal.
- Interaction diagrams:

- Are used to model the dynamic aspects of a system.
- Aid the developer in visualizing the system as it is running.
- Are storyboards of selected sequences of message traffic between objects.

- After class diagrams, interaction diagrams are possibly the most widely used UML
diagrams.

- A lifeline represents a single participant in an interaction. It describes how an instance
of a specific classifier participates in the interaction. A lifeline represents a role that an
instance of the classifier may play in the interaction.

- A message is the vehicle by which communication between objects is achieved. A
function/method call is the most common type of message. The return of data as a result
of a function call is also considered a message.

- A message may result in a change of state for the receiver of the message.
- The receipt of a message is considered an instance of an event.
- Interactions model the dynamic aspects of a system by showing the message traffic

between a group of objects. Showing the time-ordering of the message traffic is a central
ingredient of interactions.

- Graphically, a message is represented as a directed line that is labeled.
- The sequence diagram is the most commonly used UML interaction diagram. Typically

a sequence diagram captures the behavior of a group of objects in a single scenario.
- Interaction Frame Operators:

Operator Name Meaning

Opt Option An operand is executed if the condition is true. (E.g. If-else)

Alt Alternative The operand, whose condition is true, is executed. (E.g. Switch)

Loop Loop It is used to loop an instruction for a specified period.

Break Break It breaks the loop if a condition is true or false, and the next
instruction is executed.

Ref Reference It is used to refer to another interaction.

Par Parallel All operands are executed in parallel.

Region Critical Region Only 1 thread can execute this frame at a time.

Neg Negative Frame shows an invalid interaction.

Sd Sequence
Diagram (Optional) Used to surround the whole diagram.

UML Diagram Notes
20

- Parallel Example: The interaction operator par defines potentially parallel execution of
behaviors of the operands of the combined fragment. Different operands can be
interleaved in any way as long as the ordering imposed by each operand is preserved.

- Region Example: The interaction operator region defines that the combined fragment
represents a critical region. A critical region is a region with traces that cannot be
interleaved by other occurrence specifications on the lifelines covered by the region.

- Negative Example: The interaction operator neg describes a combined fragment of
traces that are defined to be negative (invalid). Negative traces are the traces which
occur when the system has failed. All interaction fragments that are different from the
negative are considered positive, meaning that they describe traces that are valid and
should be possible.

UML Diagram Notes
21

Sequence Diagrams:
- Introduction:
- A sequence diagram depicts interactions between objects in a sequential order. The

purpose of a sequence diagram in UML is to visualize the sequence of a message flow
in the system. The sequence diagram shows the interaction between two lifelines as a
time-ordered sequence of events.

- A sequence diagram shows an implementation of a scenario in the system. Lifelines in
the system take part during the execution of a system.

- In a sequence diagram, a lifeline is represented by a vertical bar.
- A message flow between two or more objects is represented using a vertical dotted line

which extends across the bottom of the page.
- Sequence diagrams are built around an X-Y axis.
- Objects are aligned at the top of the diagram, parallel to the X axis.
- Messages travel parallel to the X axis.
- Time passes from top to bottom along the Y axis.
- Sequence diagrams most commonly show relative timings, not absolute timings.
- Links between objects are implied by the existence of a message.
- Example of a sequence diagram:

- Example of a sequence diagram:

UML Diagram Notes
22

- Benefits of a sequence diagram:
- Sequence diagrams are used to explore any real application of a system.
- Sequence diagrams are used to represent the message flow from one object to another.
- Sequence diagrams are easy to maintain and generate.
- Sequence diagrams can be easily updated according to the changes within a system.
- Sequence diagrams allow both reverse and forward engineering.
- Drawbacks of a sequence diagram:
- Sequence diagrams can become complex when too many lifelines are involved in the

system.
- If the order of message sequence is changed, then incorrect results are produced.
- Each sequence needs to be represented using different message notation, which can be

a little complex.
- The type of message decides the type of sequence inside the diagram.
- When to use sequence diagrams:

1. Comparing Design Options:
- Shows how objects collaborate to carry out a task.
- Graphical form shows alternative behaviours.

2. Assessing Bottlenecks
3. Explaining Design Patterns:

- Enhances structural models.
- Good for documenting behaviour of design features.

4. Elaborating Use Cases:
- Shows how the user expects to interact with the system.
- Shows how the user interface operates.

- Modelling Control Flow By Time:
- Determine what scenarios need to be modeled.
- Identify the objects that play a role in the scenario.
- Lay the objects out in a sequence diagram left to right, with the most important objects

on the left.
Most important in this context means objects that are the principle initiators of events.

- Draw in the message arrows, top to bottom.
Adorn the message as needed with detailed timing information.

- Style Guide for Sequence Diagrams:
1. Spatial Layout:

- Strive for left-to-right ordering of messages.
- Put proactive actors on the left.
- Put reactive actors on the right.

2. Readability:
- Keep diagrams simple.
- Don’t show obvious return values.
- Don’t show object destruction.

3. Usage:
- Focus on critical interactions only.

4. Consistency:
- Class names must be consistent with class diagram.
- Message routes must be consistent with navigable class associations.

UML Diagram Notes
23

- Summary:
Item & Example Description Depiction

Lifeline A lifeline represents an individual participant in
the interaction.

Lifelines represent the passage of time as it
extends downward.

The dashed vertical line shows the sequential
events that occur to an object during the charted
process.

A labeled rectangle shape with a
dotted line extending from its
bottom.

Activation box Represents the time needed for an object to
complete a task. The longer the task will take,
the longer the activation box becomes.

A thin rectangle on a lifeline.

The top and the bottom of the
rectangle are aligned with the
initiation and the
completion time
respectively.

Message A message defines a particular communication
between lifelines.

A solid line with a solid arrowhead.

Asynchronous
Message

Asynchronous messages don't require a
response before the sender continues. Only the
call should be included in the diagram.

A solid line with a lined arrowhead.

Reply Message A return message is a kind of message that
represents the pass of information back to the
caller of a corresponded former message.

A dashed line with a lined
arrowhead.

Self Message A self message is a kind of message that
represents the invocation of a message of the
same lifeline.

A solid line with a lined arrowhead
pointing to the same lifeline that it
originated from.

UML Diagram Notes
24

Use Case Diagrams:
- Introduction:
- A use case diagram is the primary form of system/software requirements for a new

software program.
- Use cases specify the expected behavior (what), and not the exact method of making it

happen (how).
- A key concept of use case modeling is that it helps us design a system from the end

user's perspective. It is an effective technique for communicating a system’s behavior in
the user's terms.

- Use case diagrams are used to gather the requirements of a system including internal
and external influences.

- A use case:
- Specifies the behavior of a system or some subset of a system.
- Is a set of scenarios tied together by a common user goal.
- Does not indicate how the specified behavior is implemented, only what the

behavior is.
- Performs a service for some user of the system, called an actor.

- A use case represents a functional requirement of the system. A requirement:
- Is a design feature, property, or behavior of a system.
- States what needs to be done, but not how it is to be done.
- Is a contract between the customer and the developer.
- Can be expressed in various forms, including use cases.

- In brief, the purposes of use case diagrams are as follows:
- Used to gather the requirements of a system.
- Used to get an outside view of a system.
- Identify the external and internal factors influencing the system.
- Show the interaction among the requirements of the actors.

- An actor:
- Is a role that the user plays with respect to the system. The user does not have to

be human.
- Is associated with one or more use cases.
- Is most typically represented as a stick figure of a person labeled with its role

name. Note that the role names should be nouns.
- May exist in a generalization relationship with other actors in the same way as

classes may maintain a generalization relationship with other classes.
- Note: Use cases diagrams do not show the order in which the steps are performed to

achieve the goals of each use case. It only shows the relationship between actors,
systems and use cases.

- Use cases are a technique for capturing the functional requirements of a system. Use
cases work by describing the typical interactions between the users of a system and the
system itself, providing a narrative of how the system is used.

- Use case development process:
1. Develop multiple scenarios.
2. Distill the scenarios into one or more use cases where each use case represents

a functional requirement.
3. Establish associations between the use cases and actors.

- A use case is graphically represented as an oval with the name of its functionality written
inside. The functionality is always expressed as a verb or a verb phrase.

- A use case may exist in relationships with other use cases much in the same way as
classes maintain relationships with other classes.

UML Diagram Notes
25

- As stated earlier, a use case by itself does not describe the flow of events needed to
carry out the use case. The flow of events can be described using informal text,
pseudocode, or activity diagrams.
I.e. You can attach a note to a use case to show the flow of the event. Be sure to
address exception handling when describing the flow of events.
E.g.

- Relationships Between Use Cases:
- A use case may have a relationship with other use cases.
- Generalization between use cases is used to extend the behavior of a parent use case.
- An <<include>> relationship between use cases means that the base use case

explicitly incorporates the behavior of another use case at a location specified in the
base.
Note: Sometimes <<uses>> is used instead of <<include>>.
When a use case is depicted as using the functionality of another use case, the
relationship between the use cases is named as an <<include>> or <<uses>>
relationship.

- An <<extend>> relationship between use cases means that the base use case
implicitly incorporates the behavior of another use case at a location specified indirectly
by the extending use case.

- Extended behavior is optional behavior, while included behavior is required behavior.
I.e. Extended means “may use” while include/uses means “will use”.

- Extend occurs when one use case adds a behaviour to a base use case while include
occurs when one use case invokes another.

- Actor Classes:
- Identify classes of actors.
- Actors inherit use cases from the class.

UML Diagram Notes
26

- Describing Use Cases:
- For each use case, a flow of events document, written from the actor’s point of view,

describes what the system must provide to the actor when the use case is executed.
- Typical contents:

- How the use case starts and ends.
- Normal flow of events.
- Alternate flow of events.
- Exceptional flow of events.

- Documentation style:
- Activity Diagrams - Good for business process.
- Collaboration Diagrams - Good for high level design.
- Sequence Diagrams - Good for detailed design.

- Finding Use Cases:
- Noun phrases may be domain classes.
- Verb phrases may be operations and associations.
- Possessive phrases may indicate attributes.
- For each actor, ask the following questions:

1. What functions does the actor require from the system?
2. What does the actor need to do?
3. Does the actor need to read, create, destroy, modify or store information in the

system?
4. Does the actor have to be notified about events in the system?
5. Does the actor need to notify the system about something?
6. What do these events require in terms of system functionality?
7. Could the actor’s daily work be simplified or made more efficient through new

functions provided by the system?
- Summary:

Item & Example Description Depiction

Actors Is a role that the user plays with respect to
the system. The user does not have to be
human.

A stick figure.

Use Case Represents a functional requirement of the
system.

It specifies the behavior of a system or
some subset of a system.

It is a set of scenarios tied together by a
common user goal.

It does not indicate how the specified
behavior is implemented, only what the
behavior is.

An oval

UML Diagram Notes
27

Association Shows which actors use which use cases. A line connecting an actor to a use
case.

System Boundary Box The system boundary is potentially the
entire system as defined in the requirements
document.

It is a box that sets a system scope to use
cases. All use cases outside the box would
be considered outside the scope of that
system.

For large and complex systems, each
module may be the system boundary.

A blue box containing all the
relevant use cases.

<<include>>/<<uses>>
relationship

An <<include>>/<<uses>> relationship
between use cases means that the base
use case explicitly incorporates the behavior
of another use case at a location specified in
the base.

A dotted line with a lined
arrowhead originating from a use
case pointing to the used use
case.

It has <<includes>> or <<uses>>
written on the arrow.

<<extend>> relationship An <<extend>> relationship between use
cases means that the base use case
implicitly incorporates the behavior of
another use case at a location specified
indirectly by the extending use case.

A dotted line with a lined
arrowhead originating from a use
case pointing to the used use
case.

It has <<extends>> written on the
arrow.

